温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第4讲函数的图象新题培优练
函数
图象
新题培优练
[基础题组练]
1.(2019·江西七校第一次联考)设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2 018)+f(2 019)=( )
A.2 B.1
C.-1 D.0
解析:选C.因为函数f(x)是定义在R上的周期为3的周期函数,所以f(2 018)=f(2 018-673×3)=f(-1),f(2 019)=f(2 019-673×3)=f(0),由题中图象知f(-1)=-1,f(0)=0,所以f(2 018)+f(2 019)=f(-1)+f(0)=-1.
2.(2019·吉林六市联考)已知函数f(x)=|x|+,则函数y=f(x)的大致图象为( )
解析:选B.由题可知函数y=f(x)是一个非奇非偶函数,图象不关于原点对称,故排除选项A,C.又f(-1)=0,所以排除选项D,故选B.
3.(2018·高考全国卷Ⅲ)下列函数中,其图象与函数y=ln x的图象关于直线x=1对称的是( )
A.y=ln(1-x) B.y=ln(2-x)
C.y=ln(1+x) D.y=ln(2+x)
解析:选B.法一:设所求函数图象上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=ln x的图象上,所以y=ln(2-x).故选B.
法二:由题意知,对称轴上的点(1,0)既在函数y=ln x的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A,C,D,选B.
4.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为( )
解析:选C.要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.
5.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f的值等于________.
解析:由图象知f(3)=1,所以=1.所以f=f(1)=2.
答案:2
6.直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是________.
解析:y=作出图象,如图所示.
此曲线与y轴交于点(0,a),最小值为a-,要使y=1与其有四个交点,只需a-<1<a,所以1<a<.
答案:
7.已知函数f(x)=.
(1)画出f(x)的草图;
(2)写出f(x)的单调区间.
解:(1)f(x)==1-,函数f(x)的图象是由反比例函数y=-的图象向左平移1个单位后,再向上平移1个单位得到的,图象如图所示.
(2)由图象可以看出,函数f(x)有两个单调增区间:(-∞,-1),(-1,+∞).
8.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图象;
(3)若方程f(x)=a只有一个实数根,求a的取值范围.
解:(1)因为f(4)=0,所以4|m-4|=0,即m=4.
(2)f(x)=x|x-4|
=
f(x)的图象如图所示.
(3)从f(x)的图象可知,当a>4或a<0时,f(x)的图象与直线y=a只有一个交点,方程f(x)=a只有一个实数根,即a的取值范围是(-∞,0)∪(4,+∞).
[综合题组练]
1.(2018·高考全国卷Ⅲ)函数y=-x4+x2+2的图象大致为( )
解析:选D.法一:易得函数y=-x4+x2+2为偶函数,y′=-4x3+2x=-2x(x+1)(x-1),令y′>0,即2x·(x+1)(x-1)<0,解得x<-或0<x<,所以当y′<0时,-<x<0或x>,所以函数y=-x4+x2+2在,上单调递增,在,上单调递减,故选D.
法二:令x=0,则y=2,排除A,B;令x=,则y=-++2=+2,排除C.选D.
2.已知函数f(x)=则对任意x1,x2∈R,若0<|x1|<|x2|,下列不等式成立的是( )
A.f(x1)+f(x2)<0 B.f(x1)+f(x2)>0
C.f(x1)-f(x2)>0 D.f(x1)-f(x2)<0
解析:选D.函数f(x)的图象如图所示,
且f(-x)=f(x),从而函数f(x)是偶函数,且在[0,+∞)上是增函数.
又0<|x1|<|x2|,
所以f(x2)>f(x1),
即f(x1)-f(x2)<0.
3.若函数f(x)=的图象关于点(1,1)对称,则实数a=________.
解析:函数f(x)==a+,当a=2时,
f(x)=2(x≠1),函数f(x)的图象不关于点(1,1)对称,故a≠2,其图象的对称中心为(1,a),所以a=1.
答案:1
4.(应用型)已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是________.
解析:将函数y=化成分段函数,并作出其图象如图所示.
利用图象可得实数k的取值范围为(0,1)∪(1,2).
答案:(0,1)∪(1,2)
5.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
解:(1)设f(x)图象上任一点P(x,y),则点P关于(0,1)点的对称点P′(-x,2-y)在h(x)的图象上,
即2-y=-x-+2,即y=f(x)=x+(x≠0).
(2)g(x)=f(x)+=x+,
由对勾函数可知,g(x)的单调递减区间为(0,],
又g(x)在区间(0,2]上为减函数,
所以≥2,
所以a+1≥4,即a≥3,
故实数a的取值范围是[3,+∞).
6.已知函数f(x)=2x,x∈R.
(1)当m取何值时,方程|f(x)-2|=m有一个解?两个解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范围.
解:(1)令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图象如图所示,由图象看出,当m=0或m≥2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个解;
当0<m<2时,函数F(x)与G(x)的图象有两个交点,原方程有两个解.
(2)令f(x)=t(t>0),H(t)=t2+t,
因为H(t)=-在区间(0,+∞)上是增函数,
所以H(t)>H(0)=0.
因此要使t2+t>m在区间(0,+∞)上恒成立,应有m≤0,即所求m的取值范围为(-∞,0].