分享
3 第3讲 函数的奇偶性及周期性 新题培优练(1).doc
下载文档

ID:3306410

大小:142KB

页数:6页

格式:DOC

时间:2024-02-27

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第3讲函数的奇偶性及周期性新题培优练1 函数 奇偶性 周期性 新题培优练
[基础题组练] 1.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(  ) A.y=     B.y=|x|-1 C.y=lg x D.y= 解析:选B.y=为奇函数;y=lg x的定义域为(0,+∞),不具备奇偶性;y=在(0,+∞)上为减函数;y=|x|-1在(0,+∞)上为增函数,且在定义域上为偶函数. 2.设函数f(x)=ln(1+x)-ln(1-x),则f(x)是(  ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数 解析:选A.易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,又f(x)=ln =ln,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故选A. 3.设函数f(x)=若f(x)是奇函数,则g(3)的值是(  ) A.1 B.3 C.-3 D.-1 解析:选C.因为函数f(x)=f(x)是奇函数,所以f(-3)=-f(3),所以log2(1+3)=-[g(3)+1],则g(3)=-3.故选C. 4.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x-1)是奇函数,若f(0.5)=9,则f(8.5)等于(  ) A.-9 B.9 C.-3 D.0 解析:选B.因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),即f(-x)=-f(x-2).又因为f(x)是偶函数,所以f(x)=-f(x-2)=f(x-4),故f(x)的周期为4,所以f(0.5)=f(8.5)=9.故选B. 5.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为(  ) A.(-∞,-3) B.(3,+∞) C.(-∞,-1) D.(1,+∞) 解析:选D.因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数, 所以f(-2)=f(2),所以f(7)=f(2)>1, 所以a>1,即a∈(1,+∞).故选D. 6.(2019·四川达州模拟)定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[-1,0]上单调递减,设a=f(-2.8),b=f(-1.6),c=f(0.5),则a,b,c的大小关系是 (  ) A.a>b>c B.c>a>b C.b>c>a D.a>c>b 解析:选D.因为偶函数f(x)满足f(x+2)=f(x),所以函数的周期为2. 所以a=f(-2.8)=f(-0.8),b=f(-1.6)=f(0.4)=f(-0.4),c=f(0.5)=f(-0.5). 因为-0.8<-0.5<-0.4,且函数f(x)在[-1,0]上单调递减,所以a>c>b,故选D. 7.若函数f(x)=xln(x+)为偶函数,则a=________. 解析:因为 f(x)为偶函数, 所以f(-x)-f(x)=0恒成立, 所以-xln(-x+)-xln(x+)=0恒成立,所以xln a=0恒成立,所以ln a=0,即a=1. 答案:1 8.(2019·山西太原联考)已知f(x)是奇函数,且x∈(0,+∞)时的解析式是f(x)=-x2+2x,若x∈(-∞,0),则f(x)=________. 解析:由题意知f(x)是定义在R上的奇函数,当x∈(-∞,0)时,-x∈(0,+∞),所以f(-x)=-(-x)2+2×(-x)=-x2-2x=-f(x),所以f(x)=x2+2x. 答案:x2+2x 9.(2019·新疆乌鲁木齐诊断)已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是________. 解析:因为f(x)是偶函数,所以f(x)=f(|x|),所以f(|2x-1|)<f,又f(x)在[0,+∞)上单调递增,所以|2x-1|<,解得<x<. 答案: 10.已知f(x)是定义在R上的偶函数,并且f(x+3)=-,当1<x≤3时,f(x)=cos ,则f(2 017)=________. 解析:由已知可得f(x+6)=f((x+3)+3) =-=-=f(x), 故函数f(x)的周期为6. 所以f(2 017)=f(6×336+1)=f(1). 因为f(x)为偶函数,所以f(1)=f(-1), 而f(-1+3)=-, 所以f(1)=f(-1)=-=-=2. 所以f(2 017)=2. 答案:2 11.已知函数f(x)=是奇函数. (1)求实数m的值; (2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 解:(1)设x<0,则-x>0, 所以f(-x)=-(-x)2+2(-x)=-x2-2x. 又f(x)为奇函数, 所以f(-x)=-f(x), 于是x<0时,f(x)=x2+2x=x2+mx,所以m=2. (2)由(1)知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a-2]上单调递增. 结合f(x)的图象知 所以1<a≤3,故实数a的取值范围是(1,3]. 12.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x. (1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与x轴所围成的图形的面积. 解:(1)由f(x+2)=-f(x),得f(x+4)=f((x+2)+2)=-f(x+2)=f(x), 所以f(x)是以4为周期的周期函数. 所以f(π)=f(-1×4+π)=f(π-4) =-f(4-π)=-(4-π)=π-4. (2)由f(x)是奇函数与f(x+2)=-f(x), 得f((x-1)+2)=-f(x-1)=f(-(x-1)), 即f(1+x)=f(1-x). 从而可知函数y=f(x)的图象关于直线x=1对称. 又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示. 设当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×=4. [综合题组练] 1.(2019·高考全国卷Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1),若对任意x∈(-∞,m],都有f(x)≥-,则m的取值范围是(  ) A. B. C. D. 解析:选B.当-1<x≤0时,0<x+1≤1,则f(x)=f(x+1)=(x+1)x;当1<x≤2时,0<x-1≤1,则f(x)=2f(x-1)=2(x-1)(x-2);当2<x≤3时,0<x-2≤1,则f(x)=2f(x-1)=22f(x-2)=22(x-2)(x-3),……由此可得 f(x)=由此作出函数f(x)的图象,如图所示.由图可知当2<x≤3时,令22(x-2)·(x-3)=-,整理,得(3x-7)(3x-8)=0,解得x=或x=,将这两个值标注在图中.要使对任意x∈(-∞,m]都有f(x)≥-,必有m≤,即实数m的取值范围是,故选B. 2.(2019·湖南四校联考)已知定义在R上的奇函数f(x)满足f+f(x)=0,当-≤x≤0时,f(x)=2x+a,则f(16)=________. 解析:由f+f(x)=0,得f(x)=-f=f(x+5),所以函数f(x)是以5为周期的周期函数,则f(16)=f(3×5+1)=f(1).又f(x)是定义在R上的奇函数,所以f(0)=0,即1+a=0,a=-1,所以当-≤x≤0时,f(x)=2x-1,所以f(-1)=-,则f(1)=-f(-1)=,故f(16)=. 答案: 3.(应用型)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是________. 解析:由题意知,f(x)是偶函数,且在[0,+∞)上是增函数,所以f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔<x<1. 答案: 4.已知函数f(x)对任意x∈R满足f(x)+f(-x)=0,f(x-1)=f(x+1),若当x∈[0,1)时,f(x)=ax+b(a>0且a≠1),且f=. (1)求实数a,b的值; (2)求函数g(x)=f2(x)+f(x)的值域. 解:(1)因为f(x)+f(-x)=0, 所以f(-x)=-f(x),即f(x)是奇函数. 因为f(x-1)=f(x+1),所以f(x+2)=f(x), 即函数f(x)是周期为2的周期函数, 所以f(0)=0,即b=-1. 又f=f=-f=1-=, 解得a=. (2)当x∈[0,1)时,f(x)=ax+b=-1∈, 由f(x)为奇函数知, 当x∈(-1,0)时,f(x)∈, 又因为f(x)是周期为2的周期函数, 所以当x∈R时,f(x)∈, 设t=f(x)∈, 所以g(x)=f2(x)+f(x)=t2+t=-, 即y=-∈. 故函数g(x)=f2(x)+f(x)的值域为.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开