[基础题组练]1.已知向量a=(1,1),b=(0,2),则下列结论正确的是()A.a∥bB.(2a-b)⊥bC.|a|=|b|D.a·b=3解析:选B.对于A,1×2-0×1≠0,错误;对于B,2a-b=(2,0),b=(0,2),则2×0+0×2=0,所以(2a-b)⊥b,正确;对于C,|a|=,|b|=2,错误;对于D,a·b=1×0+1×2=2,错误.2.设a=(1,2),b=(1,1),c=a+kb.若b⊥c,则实数k的值等于()A.-B.-C.D.解析:选A.c=a+kb=(1,2)+k(1,1)=(1+k,2+k),因为b⊥c,所以b·c=0,b·c=(1,1)·(1+k,2+k)=1+k+2+k=3+2k=0,所以k=-.3.(2019·湖南省五市十校联考)已知向量a,b满足|a|=1,|b|=2,a·(a-2b)=0,则|a+b|=()A.B.C.2D.解析:选A.由题意知,a·(a-2b)=a2-2a·b=1-2a·b=0,所以2a·b=1,所以|a+b|===.故选A.4.已知向量a,b满足|a|=1,(a+b)·(a-2b)=0,则|b|的取值范围为()A.[1,2]B.[2,4]C.D.解析:选D.由题意知b≠0,设向量a,b的夹角为θ,因为(a+b)·(a-2b)=a2-a·b-2b2=0,又|a|=1,所以1-|b|cosθ-2|b|2=0,所以|b|cosθ=1-2|b|2,因为-1≤cosθ≤1,所以-|b|≤1-2|b|2≤|b|,所以≤|b|≤1,所以|b|的取值范围是.5.若单位向量e1,e2的夹角为,向量a=e1+λe2(λ∈R),且|a|=,则λ=________.解析:由题意可得e1·e2=,|a|2=(e1+λe2)2=1+2λ×+λ2=,化简得λ2+λ+=0,解得λ=-.答案:-6.(2019·江西七校联考)已知向量a=(1,),b=(3,m),且b在a上的投影为-3,则向量a与b的夹角为________.解析:因为b在a上的投影为-3,所以|b|cos〈a,b〉=-3,又|a|==2,所以a·b=|a||b|cos〈a,b〉=-6,又a·b=1×3+m,所以3+m=-6,解得m=-3,则b=(3,-3),所以|b|==6,所以cos〈a,b〉===-,因为0≤〈a,b〉≤π,所以a与b的夹角为.答案:7.已知向量a=(2,-1),b=(1,x).(1)若a⊥(a+b),求|b|的值;(2)若a+2b=(4,-7),求向量a与b夹角的大小.解:(1)由题意得a+b=(3,-1+x).由a⊥(a+b),可得6+1-x=0,解得x=7,即b=(1,7),所以|b|==5.(2)由题意得,a+2b=(4,2x-1)=(4,-7),故x=-3,所以b=(1,-3),所以cos〈a,b〉===,因为〈a,b〉∈[0,π],所以a与b夹角是.8.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a与b的夹角θ;(2)求|a+b|;(3)若AB=a,BC=b,求△ABC的面积.解:(1)因为(2a-3b)·(2a+b)=61,...