专题02函数易错点1换元求解析式时忽略自变量范围的变化已知,求f(x)的解析式.【错解】令,则x=t2+1,所以f(t)=3-(t2+1)=2-t2,即有f(x)=2-x2.【错因分析】本例的错误是由于忽视了已知条件中“f”作用的对象“”是有范围限制的.利用换元法求函数的解析式时,一定要注意换元后新元的限制条件.【试题解析】令,则t≥0,且x=t2+1,所以f(t)=3-(t2+1)=2-t2(t≥0),即f(x)=2-x2(x≥0).【参考答案】f(x)=2-x2(x≥0).利用换元法求函数解析式时,一定要注意保持换元前后自变量的范围.1.已知,则A.B.C.D.注意:用替换后,要注意的取值范围为,忽略了这一点,在求时就会出错.本题也可用配凑法,具体解析过程如下:,又,所以.故选A.易错点2分段函数的参数范围问题设函数,则满足的a的取值范围是A.B.[0,1]C.D.[1,+∞)【错解】当a<1时,f(a)=3a-1,此时f(f(a))=3(3a-1)-1=9a-4,,方程无解.当a≥1时,,此时,方程恒成立,故选D.【错因分析】对字母a的讨论不全而造成了漏解,实际上应先对3a-1与1的大小进行探讨,即参数a的分界点应该有2个,a=或a=1,所以在分段函数中若出现字母且其取值不明确时,应先进行分类讨论.【试题解析】①当时,,,,显然.②当≤a<1时,,,故.③当时,,,,故.综合①②③知a≥.【参考答案】C求分段函数应注意的问题:在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.2.已知函数的值域是,则实数的取值范围是A.B.C.D.【答案】B易错点3对单调区间和在区间上单调的两个概念理解错误若函数f(x)=x2+2ax+4的单调递减区间是(-∞,2],则实数a的取值范围是________.【错解】函数f(x)的图象的对称轴为直线x=-a,由于函数在区间(-∞,2]上单调递减,因此-a≥2,即a≤-2.【错因分析】错解中把单调区间误认为是在区间上单调.【试题解析】因为函数f(x)的单调递减区间为(-∞,2],且函数f(x)的图象的对称轴为直线x=-a,所以有-a=2,即a=-2.【参考答案】a=-2单调区间是一个整体概念,比如说函数的单调递减区间是I,指的是函数递减的最大范围为区间I.而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件的含义.3.已知函数在区间上为减函数,...