2001
全国硕士研究生
入学
统一
考试
数学
解析
2001年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)设为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.
(2),则= _____________.
(3)交换二次积分的积分次序:=_____________.
(4)设,则= _____________.
(5),则根据车贝晓夫不等式有估计 _____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设函数在定义域内可导,的图形如右图所示,则的图形为
(A) (B) (C) (D)
(2)设在点的附近有定义,且则
(A)
(B)曲面在处的法向量为
(C)曲线 在处的切向量为
(D)曲线 在处的切向量为
(3)设则在=0处可导
(A)存在 (B) 存在
(C)存在 (D)存在
(4)设,则与
(A)合同且相似 (B)合同但不相似 (C)不合同但相似 (D)不合同且不相似
(5)将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数, 则和相关系数为
(A) -1 (B)0 (C) (D)1
三、(本题满分6分)
求.
四、(本题满分6分)
设函数在点可微,且,,求.
五、(本题满分8分)
设 ,将展开成的幂级数,并求的和.
六、(本题满分7分)
计算,其中是平面 与柱面的交线,从轴正向看去为逆时针方向.
七、(本题满分7分)
设在内具有二阶连续导数且.证明:
(1)对于,存在惟一的,使 =+成立.
(2).
八、(本题满分8分)
设有一高度为为时间)的雪堆在融化过程,其侧面满足方程(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?
九、(本题满分6分)
设为线性方程组的一个基础解系,
,
其中为实常数,试问满足什么条件时也为的一个基础解系?
十、(本题满分8分)
已知三阶矩阵和三维向量,使得线性无关,且满足.
(1)记求使.
(2)计算行列式.
十一、(本题满分7分)
某班车起点站上客人数服从参数为的泊松分布,每位乘客在中途下车的概率为且中途下车与否相互独立.为中途下车的人数,求:
(1)在发车时有个乘客的条件下,中途有人下车的概率.
(2)二维随机变量的概率分布.
十二、(本题满分7分)
设抽取简单随机样本
样本均值,,求
2001年考研数学一试题答案与解析
一、填空题
(1)【分析】 由通解的形式可知特征方程的两个根是,从而得知特征方程为
.
由此,所求微分方程为.
(2)【分析】 先求gradr.
gradr=.
再求 divgradr=
=.
于是 divgradr|=.
(3)【分析】 这个二次积分不是二重积分的累次积分,因为时
.由此看出二次积分是二重积分的一个累次
积分,它与原式只差一个符号.先把此累次积分表为
.
由累次积分的内外层积分限可确定积分区域:
.
见图.现可交换积分次序
原式=.
(4)【分析】 矩阵的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.
因为 ,
故 ,即 .
按定义知 .
(5)【分析】 根据切比雪夫不等式
,
于是 .
二、选择题
(1)【分析】 当时,单调增,(A),(C)不对;
当时,:增——减——增:正——负——正,(B)不对,(D)对.
应选(D).
(2)【分析】 我们逐一分析.
关于(A),涉及可微与可偏导的关系.由在(0,0)存在两个偏导数在(0,0)处可微.因此(A)不一定成立.
关于(B)只能假设在(0,0)存在偏导数,不保证曲面在
存在切平面.若存在时,法向量n={3,1,-1}与{3,1,1}不共线,因而(B)不成立.
关于(C),该曲线的参数方程为 它在点处的切向量为
.
因此,(C)成立.
(3)【分析】 当时,.
关于(A):,
由此可知 .
若在可导(A)成立,反之若(A)成立 .如满足(A),但不.
关于(D):若在可导,
.
(D)成立.反之(D)成立在连续,在可导.如 满足(D),但在处不连续,因而也不.
再看(C):
(当它们都时).
注意,易求得.因而,若(C)成立.反之若(C)成立(即
).因为只要有界,任有(C)成立,如满足(C),但不.
因此,只能选(B).
(4)【分析】 由 ,知矩阵的特征值是4,0,0,0.又因是实对称矩阵,必能相似对角化,所以与对角矩阵相似.
作为实对称矩阵,当时,知与有相同的特征值,从而二次型与有相同的正负惯性指数,因此与合同.
所以本题应当选(A).
注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如
与,
它们的特征值不同,故与不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以与合同.
(5)【分析】 解本题的关键是明确和的关系:,即,在此基础上利用性质:相关系数的绝对值等于1的充要条件是随机变量与之间存在线性关系,即(其中是常数),且当时,;当时,,由此便知,应选(A).
事实上,,,由此由相关系数的定义式有 .
三、【解】 原式=
=
=.
四、【解】 先求.
求 ,归结为求.由复合函数求导法
,
.
注意 ,.
因此 ,.
五、【分析与求解】 关键是将展成幂级数,然后约去因子,再乘上并化简即可.
直接将展开办不到,但易展开,即
, ①
积分得 ,. ②
因为右端积分在时均收敛,又在连续,所以展开式在收敛区间端点成立.
现将②式两边同乘以得
=
=
, ,
上式右端当时取值为1,于是
.
上式中令.
六、【解】 用斯托克斯公式来计算.记为平面上所
为围部分.由的定向,按右手法则取上侧,的单位法向量
.
于是由斯托克斯公式得
=
=.
于是 .
按第一类曲面积分化为二重积分得
,
其中围在平面上的投影区域(图).由关于轴的对称性及被积函数的奇偶性得
.
七、【证明】 (1)由拉格朗日中值定理,,,使
(与有关);又由连续而,在不变号,在严格单调,唯一.
(2)对使用的定义.由题(1)中的式子先解出,则有
.
再改写成 .
,
解出,令取极限得
.
八、【解】 (1)设时刻雪堆的体积为,侧面积为.时刻雪堆形状如图所示
先求与.
侧面方程是.
.
.
作极坐标变换:,则
.
用先二后一的积分顺序求三重积分 ,
其中,即.
.
(2)按题意列出微分方程与初始条件.
体积减少的速度是,它与侧面积成正比(比例系数0.9),即
将与的表达式代入得 ,即
. ①
. ②
(3)解①得. 由②得,即.
令,得.因此,高度为130厘米的雪堆全部融化所需时间为100小时.
九、【解】 由于是线性组合,又是的解,所以根据齐次线性方程组解的性质知均为的解.
从是的基础解系,知.
下面来分析线性无关的条件.设,即
.
由于 线性无关,因此有
(*)
因为系数行列式
,
所以当时,方程组(*)只有零解.
从而线性无关.
十、【解】 (1)由于 ,即
,
所以.
(2)由(1)知,那么,从而
.
十一、【解】 (1).
(2)=
=
十二、【解】 易见随机变量,,相互独立都服从正态分布.因此可以将它们看作是取自总体的一个容量为的简单随机样本.其样本均值为 ,
样本方差为 .
因样本方差是总体方差的无偏估计,故,即.