15.3简单的轴对称图形第3课时角平分线的性质教学目标1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)2.能运用角的平分线性质定理解决简单的几何问题.(难点)教学过程一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的性质【类型一】利用角平分线的性质证明线段相等如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,∠FDC=∠BDE.试说明:(1)CF=EB;(2)AB=AF+2EB.解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即DE=DC.再根据△CDF≌△EDB,得CF=EB;(2)利用角平分线的性质可得△ADC和△ADE全等,从而得到AC=AE,然后通过线段之间的相互转化进行求解.解:(1) AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC. 在△CDF和△EDB中, ∴△CDF≌△EDB(ASA).∴CF=EB;(2) AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴∠CAD=∠EAD,∠ACD=∠AED=90°.在△ADC和△ADE中, ∴△ADC≌△ADE(AAS),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条垂线段相等.【类型二】角平分线的性质与三角形面积的综合运用如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是()2A.6B.5C.4D.3解析:过点D作DF⊥AC于F. AD是△ABC的角平分线,DE⊥AB,∴DF=DE=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】角平分线的性质与全等三角形综合如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.试说明:CE=CF.解析:由△DEC≌△DFC得出CD平分∠EDF,根据角平分线的性质,得出CE=CF.解: CD是∠ACG的平分线,∴∠ECD=∠FCD.在△DEC和△DFC中, ∴△DEC≌△DFC(AAS),∠EDC=∠FDC.又 DE⊥AC,DF⊥CG,∴CE=CF.方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.【类型四】角平分线的性质与线段垂直平分线性质的综合运用如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.(1)找出图中...