分享
《二次函数与一元二次方程(1)》参考教案.doc
下载文档

ID:3288616

大小:54.50KB

页数:6页

格式:DOC

时间:2024-02-21

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
二次函数与一元二次方程1 二次 函数 一元 二次方程 参考 教案
3.7二次函数与一元二次方程(1) 教学目标 (一)教学知识点 1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根. 3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标. (二)能力训练要求 1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神. 2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想. 3.通过学生共同观察和讨论,培养大家的合作交流意识. (三)情感与价值观要求 1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性. 2.具有初步的创新精神和实践能力. 教学重点 1.体会方程与函数之间的联系. 2.理解何时方程有两个不等的实根,两个相等的实数和没有实根. 3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标. 教学难点 1.探索方程与函数之间的联系的过程. 2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系. 教学方法 讨论探索法. 教具准备 投影片二张 第一张:(记作§3.7.1A) 第二张:(记作§3.7.1B) 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解. 现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题. Ⅱ.讲授新课 一、例题讲解 投影片:(§3.7.1A) 我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么 (1)h与t的关系式是什么? (2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流. [师]请大家先发表自己的看法,然后再解答. [生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式. (2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可. 还可以观察图象得到. [师]很好.能写出步骤吗? [生]解:(1)∵h=-5t2+v0t+h0, 当v0=40,h0=0时, h=-5t2+40t. (2)从图象上看可知t=8时,小球落地或者令h=0,得: -5t2+40t=0, 即t2-8t=0. ∴t(t-8)=0. ∴t=0或t=8. t=0时是小球没抛时的时间,t=8是小球落地时的时间. 二、议一议 投影片:(§3.7.1B) 二次函数①y=x2+2x, ②y=x2-2x+1, ③y=x2-2x+2的图象如下图所示. (1)每个图象与x轴有几个交点? (2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?用判别式验证一下:一元二次方程x2-2x+2=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? [师]还请大家先讨论后解答. [生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点. (2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根. (3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2; 二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根. 由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根. [师]大家总结得非常棒. 二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根. 三、想一想 在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的? [师]请大家讨论解决. [生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有 -5t2+40t=60, t2-8t+12=0, ∴t=2或t=6. 因此当小球离开地面2秒和6秒时,高度都是60m. Ⅲ.课堂练习 随堂练习(P106) Ⅳ.课时小结 本节课学了如下内容: 1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系. 2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根. Ⅴ.课后作业 习题3.15 板书设计 §3.7.1 二次函数与一元二次方程(一) 一、1.例题讲解(投影片§3.7.1A) 2.议一议(投影片§3.7.1B) 3.想一想 二、课堂练习 随堂练习 三、课时小结 四、课后作业 备课资料 思考、探索、交流 把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么? 解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则 S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625. 即当x=25时,S最大=625. (2)S正方形=252=625. (3)∵正三角形的边长为m,高为m, ∴S三角形==≈481(m2). (4)∵2πr=100,∴r=. ∴S圆=πr2=π·()2=π·=≈796(m2). 所以圆的面积最大. 6 / 6

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开