分享
《30°45°60°角的三角函数值》综合检测1.doc
下载文档

ID:3288228

大小:560.50KB

页数:6页

格式:DOC

时间:2024-02-21

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
30°,45°,60°角的三角函数值 30 45 60 三角函数 综合 检测
2.2 30°,45°,60°角的三角函数值 一、请准确填空 1.图1表示甲、乙两山坡情况,其中tanα_____tanβ,_____坡更陡.(前一空填“>”“<”或“=”,后一空填“甲”“乙”) 图1 2.在△ABC中,∠C=90°,BC=3,AB=4.则∠B的正弦值是_____. 3.小明要在坡度为的山坡上植树,要想保证水平株距为5 m,则相邻两株树植树地点的高度差应为_____m. 4.在△ABC中,∠C=90°,AC=BC,则sinA=_____,tanA=_____. 5.在△ABC中,AB=AC=10,BC=16,则sinB=_____. 6.观察一副三角尺,把两个角拼在一起,其和仍为锐角,此和是_____度. 7.在Rt△ABC中,∠C=90°,sinA=,则cosB=_____. 8.有一拦水坝的横断面是等腰梯形,它的上底长为6米,下底长为10米,高为2米,那么此拦水坝斜坡的坡度为_____,坡角为_____. 二、相信你的选择 9.已知在Rt△ABC中,∠C=90°.若sinA=,则sinB等于( ) A.  B. C. D.1 10.在△ABC中,∠C=90°,a、b分别是∠A、∠B所对的两条直角边,c是斜边,则有( ) A.sinA= B.cosB= C.tanA= D.cosB= 11.如图2,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( ) 图2 A.(m2) B.(m2) C.1600sinα(m2) D.1600cosα(m2) 12.在Rt△ABC中,∠C=90°,sinA=,则BC∶AC∶AB等于( ) A.1∶2∶5 B.1∶∶ C.1∶∶2 D.1∶2∶ 13.小刚在距某电信塔10 m的地面上(人和塔底在同一水平面上),测得塔顶的仰角是 60°,则塔高( ) A.10 m B.5 m C.10 m D.20 m 14.李红同学遇到了这样一道题:tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10° 15.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是( ) A.△ABC是等腰三角形 B.△ABC是等腰直角三角形 C.△ABC是直角三角形 D.△ABC是一般锐角三角形 16.把Rt△ABC的三边都扩大十倍,关于锐角A的正弦值:甲同学说扩大十倍;乙同学说不变;丙同学说缩小十倍.那么你认为正确的说法应是( ) A.甲 B.乙 C.丙 D.都不正确 三、考查你的基本功 17.(16分)计算或化简: (1)cos30°+sin45°; (2)·tan 30°; (3)(sin60°+cos 45°)(sin 60°-cos 45°); (4)6tan2 30°-sin 60°-2sin 45°; 18.(8分)根据下列条件,求出Rt△ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°. (2)∠B=45°,AC=. 19.(5分)在Rt△ABC中,∠BCA=90°,CD是中线,AC=6,CD=5,求sin∠ACD、cos∠ACD和tan∠ACD. 20.(6分)如图3,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α. (1)求sinα、cosα、tanα的值; (2)若∠B=∠CAD,求BD的长. 四、生活中的数学 21.(5分)一艘轮船从西向东航行,上午10时航行到点A处,此时测得在船北偏东30°上有一灯塔B,到11时测得灯塔B正好在船的正北方向,此时轮船所处位置为C点 (如图4),若该船的航行速度为每小时20海里,那么船在C点时距离灯塔B多远?(取1.73) 图3 图4 图5 22.(6分)如图5,河岸护堤AD、BC互相平行,要测量河两岸相对两树A、B的距离,小赵从B点沿垂直AB的BC方向前进,他手中有足够长的米尺和含有30°角的一块三角板. (1)请你帮小赵设计一下测量AB长的具体方案; (2)给出具体的数值,求出AB的长. 五、探究拓展与应用 23.(6分)要求tan30°的值,可构造如图6所示的直角三角形进行计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=,∠ABC=30°,tan30°= ==.在此图的基础上通过添加适当的辅助线,可求出tan15°的值.请你写出添加辅助线的方法,并求出tan15°的值. 图6 参考答案 一、1.< 乙 2. 3.3 4. 1 5. 6.75 7. 8. 60° 二、9.B 10.C 11.A 12.C 13.A 14.D 15.B 16.B 三、17.(1) (2) (3) (4)- 18.(1)∠A=30° AB=16 AC=8. (2)∠A=45° BC= AB=2. 19.解:∵∠BCA=90°,CD是中线, ∴CD=AB=AD=BD. ∴∠A=∠ACD,AB=2CD=10. ∴BC==8. 则sin∠ACD=sinA==, cos∠ACD=cosA==, tan∠ACD=tanA==. 20.解:在Rt△ACD中, ∵AC=2,DC=1, ∴AD==. (1)sinα===, cosα===, tanα==. (2)∵∠B=α,∠C=90°, ∴△ABC∽△DAC. ∴=.∴BC==4. 则BD=BC-CD=4-1=3. 四、21.解:由题意知∠BAC=60°,∠C=90°, AC=20×(11-10)=20(海里). ∴tan∠BAC=,即tan60°=. ∴BC=20tan60°=20≈34.6(海里). 22.(1)方案:至某点C时,三角板60°角一直角边与BC重合,另一边与AC重合,然后用米尺量出BC的长度,此法就可求出AB的长. (2)设BC=10米,∠C=60°, 则在Rt△ABC中,tanC=, ∴AB=BC·tan60°=10×=10(米). 五、23.此处只给出两种方法(还有其他方法). (1)如下图. 延长CB到D,使BD=AB,连接AD,则∠D=15°. tan15°===2-, (2)如下图,延长CA到E,使CE=CB, 连接BE,则∠ABE=15°. ∴tan15°=2-. 6 / 6

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开