4.1一元二次方程(1)1.理解一元二次方程的概念.(难点)2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题.(重点)学习目标复习引入没有未知数1.下列式子哪些是方程?2+6=82x+35x+6=22x+3y=8924xx-5<18代数式一元一次方程二元一次方程不等式分式方程导入新课2.什么叫方程?我们学过哪些方程?含有未知数的等式叫作方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.3.什么叫一元一次方程?含有一个未知数,且未知数的次数是1的整式方程叫作一元一次方程.想一想:什么叫一元二次方程呢?一元二次方程的相关概念问题1:幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?解:如果设所求的宽为xm,那么地毯中央长方形图案的长为m,宽为m,根据题意,可得方程:(8-2x)(5-2x)xx(8–2x)xx(5–2x)(8-2x)(5-2x)=18.化简:2x2-13x+11=0.①该方程中未知数的个数和最高次数各是多少?知识点知识点讲授新课问题2:观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为:,,,.根据题意,可得方程:x+1x+2x+3x+4x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.化简得,x2-8x-20=0.②该方程中未知数的个数和最高次数各是多少?解:由勾股定理可知,滑动前梯子底端距墙m.如果设梯子底端滑动xm,那么滑动后梯子底端距墙m,根据题意,可得方程:问题3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?6x+672+(x+6)2=102.化简得,x2+12x-15=0.③10m8m1mxm该方程中未知数的个数和最高次数各是多少?①2x2-13x+11=0;②x2-8x-20=0;③x2+12x-15=0.1.只含有一个未知数;2.未知数的最高次数是2;3.整式方程.观察与思考方程①②③都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:只含有一个未知数,并且整理后未知数的最高次数是2的整式方程,叫作一元二次方程.ax2+bx+c=0(a,b,c为常数,a≠0)ax2称为二次项,a称为二次项系数.bx称为一次项,b称为一次项系数.知识要点一元二次方程的概念一元二次方程的一般形式是想一想为什么一般形式中ax2+bx+c=0要限制a≠0,b、...