21.2二次函数的图象和性质2.二次函数y=ax²+bx+c的图象和性质第1课时二次函数y=ax²+k的图象和性质学习目标1.会画二次函数y=ax2+k的图象.(重点)2.掌握二次函数y=ax2+k的性质并会应用.(难点)3.理解y=ax²与y=ax²+k之间的联系.(重点)这个函数的图象是如何画出来的?情境引入xy21840yx导入新课二次函数y=ax2+k的图象和性质(a>0)做一做:画出二次函数y=2x²,y=2x2+1,y=2x2-1的图象,并考虑它们的开口方向、对称轴和顶点坐标、顶点高低、函数最值、函数增减性.x…–1.5–1–0.500.511.5…y=2x2+1……y=2x2…4.520.500.524.5…y=2x2-1……3.51-0.51-0.5-13.55.51.531.5135.5讲授新课-222464-48y=2x2+1y=2x2y=2x2-1观察上述图象,说说它有哪些特征.探究归纳解:先列表:x···-3-2-10123···············例1在同一直角坐标系中,画出二次函数与的图象.212yx2112yx212yx2112yx921122120122923321323112xy-4-3-2-1o1234123456212yx2112yx描点、连线,画出这两个函数的图象观察与思考抛物线,的开口方向、对称轴和顶点各是什么?212yx2112yx212yx2112yx二次函数开口方向顶点坐标对称轴向上向上(0,0)(0,1)y轴y轴想一想:通过上述例子,函数y=ax2+k(a>0)的性质是什么?y-2-2422-4231xy23121xy23122xyx0二次函数y=ax2+k的图象和性质(a<0)做一做:在同一坐标系内画出下列二次函数的图象:根据图象回答下列问题:(1)图象的形状都是.(2)三条抛物线的开口方向_______;(3)对称轴都是__________(4)从上而下顶点坐标分别是_____________________抛物线向下直线x=0(0,0)(0,2)(0,-2)(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________(6)函数的增减性都相同:_______________________________________________________高大y=0y=-2y=2对称轴左侧y随x增大而增大对称轴右侧y随x增大而减小二次函数y=ax2+k(a≠0)的性质y=ax2+ka>0a<0开口方向向上向下对称轴y轴y轴顶点坐标(0,k)(0,k)最值当x=0时,y最小值=k当x=0时,y最大值=k增减性当x<0时,y随x的增大而减小;x>0时,y随x的增大而增大.当x>0时,y随x的增大而减小;x<0时,y随x的增大而增大.知识要点例2:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.解析:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2...