4.2.1
由立体图形到视图
4.2
立体
图形
视图
第4章 图形的初步认识4.2立体图形的视图4.2.1 由立体图形到视图,学习目标,【学习目标】1让学生了解三视图与现实生活的联系,会画简单的三视图;2通过从不同的方向关察物体,培养学生的空间观念;3通过观察思考,得到视图的不同效果,培养学生主动参与意识,激发学习兴趣【学习重点】会画从不同方向观察简单物体的三视图【学习难点】画组合体的三视图,情景导入,对于一些立体图形的问题,常把它们转化为平面图形来研究和处理 工人在建造房子之前,首先要看房子的图纸但在平面上画空间的物体不是一件简单的事,因为必须把它画得从各个角度都能看得很清楚为了解决这个问题,可以采用三视图,这节课就让我们一起来研究三视图吧,T26M坦克实物,摩托车,自学互研,知识模块一中心投影和平行投影,阅读教材P123P126,完成下面的内容,归纳:视图来自于投影,而投影又分为中心投影和平行投影(1)_形成的投影称为中心投影;(2)_形成的投影称为平行投影,点光源,平行光线,下列四幅图中,表示两棵小树在同一时刻阳光下的影子的图形可能是(),A,B,C,D,D,下列投影中不属于中心投影的是()A晚上路灯下小孩的影子B汽车灯光照射下行人的影子C阳光下沙滩上人的影子D舞台上一束灯光下演员的影子,C,小明拿了一个等边三角形木框在阳光下玩,那么等边三角形木框在地面上形成的影子不可能是(),A,B,C,D,B,知识模块二由立体图形到视图,视图是一种特殊的平行投影 从正面、上面和侧面(左面或右面)三个不同的方向进行平行投影,可以得到三个投影,这样就可以用平面图形去刻画一个立体图形了,从正面得到的投影,称为_;从上面得到的投影,称为_;从侧面得到的投影,称为_依投影方向不同,有左视图和右视图通常将_、_、与_称为一个物体的三视图,主视图,俯视图,侧视图,主视图,俯视图,左(右)视图,从正面得到的投影,从上面得到的投影,从侧面得到的投影,立体图形的三视图:主视图、俯视图、侧视图,主视图:,俯视图:,侧视图:,分左视图和右视图,自学互研,主视图,正方体的三视图都是正方形.,俯视图,左视图,注意三视图位置的摆放!,且三个正方形的大小完全一样,自学互研,圆柱的主视图和左视图都是长方形,两个长方形大小完全一样,俯视图是圆。,注意三视图位置的摆放!,若是一个横放的圆柱,三视图又该怎样呢?,横放圆柱的三视图:,主视图,俯视图,左视图,若是一个平放的圆柱,三视图又该怎样呢?,自学互研,平放圆柱的三视图:,主视图,俯视图,左视图,那么圆锥的三视图又该怎样呢?,自学互研,主视图,俯视图,左视图,圆锥的主视图和左视图都是三角形,两个三角形的大小完全一样。俯视图为带圆心的圆.,若是一个倒放的圆锥,三视图又该怎样呢?,倒圆锥的三视图.,主视图,左视图,俯视图,那么三棱锥的三视图又该怎样呢?,正三棱锥的三视图:,主视图,俯视图,左视图,注意:画三视图时看得见的线都要画上去.,正四棱锥的三视图:,正视图,俯视图,左视图,注意:棱锥俯视图正方形两对角线不能漏!,那么球体的三视图又该怎样呢?,主视图,俯视图,左视图,球体的三视图:,球体的三视图为三个大小完全一样的圆,画出如下图所示的一些基本几何体的三视图,解:如图,如图,是由6个同样大小的正方体摆成的几何体,将正方体移走后,所得几何体()A主视图改变,左视图改变B俯视图不变,左视图不变C俯视图不变,左视图不变D主视图改变,左视图不变,D,如图,是由6个同样大小的正方体摆成的几何体,将正方体移走后,所得几何体()A主视图改变,左视图改变B俯视图不变,左视图不变C俯视图不变,左视图不变D主视图改变,左视图不变,D,如图是由几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该处的小正方体的个数,请画出这几个几何体的主视图和左视图,解:如下图所示:,展示提升,知识模块一中心投影和平行投影知识模块二由立体图形到视图,