分享
22.2 一元二次方程的解法 第3课时.doc
下载文档

ID:3285842

大小:226KB

页数:2页

格式:DOC

时间:2024-02-21

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
22.2 一元二次方程的解法 第3课时 一元 二次方程 解法 课时
22.2 一元二次方程的解法 第3课时 教学目标 1.了解配方的概念,掌握运用配方法解一元二次方程的步骤. 2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题. 教学重难点 【教学重点】 配方的概念,运用配方法解一元二次方程. 【教学难点】 直接开平方法和配方法之间的区别和联系. 课前准备 无 教学过程 一、情境导入 李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗? 二、合作探究 探究点:配方法 【类型一】配方 用配方法解一元二次方程x2-4x=5时,此方程可变形为(  ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D. 方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 【类型二】利用配方法解一元二次方程 用配方法解方程:x2-4x+1=0. 解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解. 解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=±.∴x1=2+,x2=2-. 方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式. 【类型三】用配方解决求值问题 已知:x2+4x+y2-6y+13=0,求的值. 解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式==-. 【类型四】用配方解决证明问题 (1)用配方法证明2x2-4x+7的值恒大于零; (2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式. 证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零. (2)x2-2x+3;2x2-2x+5;3x2+6x+8等. 【类型五】配方法与不等式知识的综合应用 证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程. 解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0. 证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程. 三、板书设计 四、教学反思 教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式. 2

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开