1.2怎样判定三角形相似(3)1.掌握相似三角形的判定定理2;(重点)2.能熟练运用相似三角形的判定定理2.(难点)学习目标问题1.有两边对应成比例的两个三角形相似吗?3355不相似观察与思考问题2.类比三角形全等的判定方法(SAS,SSS),猜想可以添加什么条件来判定两个三角形相似?3355相似导入新课利用刻度尺和量角器画△ABC和△A′B′C′,使∠A=∠A′,量出BC及B′C′的长,它们的比值等于k吗?再量一量两个三角形另外的两个角,你有什么发现?△ABC与△A′B′C′有何关ABACk.A'B'A'C'合作探究两个三角形相似改变k和∠A的值的大小,是否有同样的结论?讲授新课两边成比例且夹角相等的两个三角形相似知识点知识点如图,在△ABC与△A′B′C′中,已知∠A=∠A′,ABAC.A'B'A'C'证明:在△A′B′C′的边A′B′上截取点D,使A′D=AB.过点D作DEB′C′∥,交A′C′于点E. DEB′C′∥,∴△A′DE∽△A′B′C′.求证:△ABC∽△A′B′C′.BACDEB'A'C'A'DA'E.A'B'A'C'∴∴A′E=AC.又∠A′=∠A.∴△A′DE≌△ABC,∴△A′B′C′∽△ABC.BACDEB'A'C' A′D=AB,ABACA'B'A'C',=A'DA'EACA'B'A'C'A'C',∴由此得到利用两边和夹角来判定三角形相似的定理:两边成比例,且夹角相等的两个三角形相似.符号语言: ∠A=∠A′,ABACA'B'A'C',BACB'A'C'∴△ABC∽△A′B′C′.归纳:对于△ABC和△A′B′C′,如果A′B′:AB=A′C′:AC.∠B=∠B′,这两个三角形一定会相似吗?不会,如下图,因为不能证明构造的三角形和原三角形全等.ABC思考:A′B′B″C′结论:如果两个三角形两边对应成比例,但相等的角不是两条对应边的夹角,那么两个三角形不一定相似,相等的角一定要是两条对应边的夹角.典例精析例1根据下列条件,判断△ABC和△A′B′C′是否相似,并说明理由:∠A=120°,AB=7cm,AC=14cm,∠A′=120°,A′B′=3cm,A′C′=6cm.解: 73ABA'B',14763ACA'C'=,ABAC.A'B'A'C'∴又∠A′=∠A,∴△ABC∽△A′B′C′.1.在△ABC和△DEF中,∠C=∠F=70°,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△DEF∽△ABC.ACBFED证明: AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm,又 ∠C=∠F=70°,∴△DEF∽△ABC.练一练35DFEF.ACBC∴2.如图,△ABC与△ADE都是等腰三角形,AD=AE,AB=AC,∠DAB=∠CAE.求证:△ABC∽△ADE.证明: △ABC与△ADE是等腰三角形,∴AD=AE,AB=AC,ADAE.ABAC∴又 ∠DAB=∠CAE,∴∠DAB+∠BAE=∠CAE+∠BAE,即∠D...