温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
平行四边形的判定
平行四边形
判定
综合
练习
平行四边形的判定
学习要求
进一步掌握平行四边形的判定方法.
课堂学习检测
一、填空题
1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.
1题图
2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.
2题图
3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出 个平行四边形.
4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出____ 个平行四边形.
5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.
5题图
二、选择题
6.能判定一个四边形是平行四边形的条件是( ).
(A)一组对边平行,另一组对边相等 (B)一组对边平行,一组对角互补
(C)一组对角相等,一组邻角互补 (D)一组对角相等,另一组对角互补
7.能判定四边形ABCD是平行四边形的题设是( ).
(A)AD=BC,AB∥CD (B)∠A=∠B,∠C=∠D
(C)AB=BC,AD=DC (D)AB∥CD,CD=AB
8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).
(A)1∶2∶3∶4 (B)1∶4∶2∶3
(C)1∶2∶2∶1 (D)1∶2∶1∶2
9.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).
(A)2个 (B)3个
(C)4个 (D)5个
10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).
(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)
11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).
(A)1条 (B)2条
(C)3条 (D)4条
综合、运用、诊断
一、解答题
12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).
(1)连结______;
(2)猜想:______=______;
(3)证明:
13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)
证明:
14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.
15.已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.
求证:(1)△ACD≌△CBF;
(2)四边形CDEF为平行四边形.
拓展、探究、思考
16.若一次函数y=2x-1和反比例函数的图象都经过点(1,1).
(1)求反比例函数的解析式;
(2)已知点A在第三象限,且同时在两个函数的图象上,利用图象求点A的坐标;
(3)利用(2)的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.
17.如图,点A(m,m+1),B(m+3,m-1)在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
参考答案
1.平行四边形. 2.18. 3.2. 4.3. 5.平行四边形.
6.C. 7.D. 8.D. 9.C. 10.A. 11.B.
12.(1)BF(或DF); (2)BF=DE(或BE=DF);
(3)提示:连结DF(或BF),证四边形DEBF是平行四边形.
13.提示:D是BC的中点.
14.DE+DF=10
15.提示:(1)∵△ABC为等边三角形,∴AC=CB,∠ACD=∠CBF=60°.
又∵CD=BF,∴△ACD≌△CBF.
(2)∵△ACD≌△CBF,∴AD=CF,∠CAD=∠BCF.
∵△AED为等边三角形,∴∠ADE=60°,且AD=DE.∴FC=DE.
∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,
∴∠EDB=∠BCF.∴ED∥FC.
∵EDFC,∴四边形CDEF为平行四边形.
16.(1);(2); (3)P1(-1.5,-2),P2(-2.5,-2)或P3
(2.5,2).
17.(1)m=3,k=12;
(2)或
6 / 6