分享
《一元二次方程(2)》参考教案.doc
下载文档

ID:3284894

大小:42KB

页数:3页

格式:DOC

时间:2024-02-21

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
一元二次方程2 一元 二次方程 参考 教案
课 题 8.1 一元二次方程(二) 课型 新授课 教学目标 1.探索一元二次方程的解或近似解. 2.培养学生的估算意识和能力. 3. 经历方程解的探索过程,增进对方解的认识,发展估算意识和能力. 教学重点 探索一元二次方程的解或近似解. 教学难点 培养学生的估算意识和能力. 教学方法 分组讨论法 教 学 内 容 及 过 程 学生活动 一、创设现实情境,引入新课 前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家回忆一下。 二、地毯花边的宽x(m)满足方程 估算地毯花边的宽 地毯花边的宽x(m),满足方程 (8-2x)(5-2x)=18 也就是:2x2-13x+11=0 你能求出x吗? (1)x可能小于0吗?说说你的理由;x不可能小于0,因为x表示地毯的宽度。 (2)x可能大于4吗?可能大于2.5吗?为什么? (3)完成下表 x 0 0.5 1 1.5 2 2.5 2x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。 三、梯子底端滑动的距离x(m)满足方程 (x+6)2+72=102 也就是x2+12x-15=0 (1)你能猜出滑动距离x(m)的大致范围吗? (2)x的整数部分是几?十分位是几? 注意:(1)估算的精度不适过高。(2)计算时提倡使用计算器。 四、课堂练习 课本P53随堂练习 1.五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个整数分别是多少吗? 五、课时小结 本节课我们通过解决实际问题,探索了一元二次方程的解或近似解,并了解了近似计算的重要思想——“夹逼”思想. 六、课后作业 (一)课本P54习题8.2 l、2 (二)1.预习内容:P55—P56 板书设计: 一、地毯花边的宽x(m),满足方程 (8-2x)(5-2x)=18 二、梯子底端滑动的距离x(m)满足方程 (x+6)2+72=102 三、练习 四、小结 回答下列问题:什么叫一元二次方程?它的一般形式是什么?一般形式:ax2+bx+c-0(a≠0) 2、指出下列方程的二次项系数,一次项系数及常数项。 (1)2x2-x+1=0 (2)-x2+1=0 (3)x2-x=0 (4)-x2=0 (8-2x)(5-2x)=18, 即2x2-13x+11=0. 注:x>0, 8-2x>0, 5-2x>0. 从左至右分别11,4.75,0,-4,-7,-9 地毯花边1米,另,因8-2x比5-2x多3,将18分解为6×3,8-2x=6,x=1 (x+6)+7=10, 即x+12x-15=0. 所以1<x<2. x的整数部分是1, 所以x的整数部分是l,十分位是1. x 0 0.5 1 1.5 x2+12x-15 -15 -8.75 -2 5.25 所以1<x<1.5 进一步计算 x 1.1 1.2 1.3 1.4 x2+12x-15 -0.59 0.84 2.29 3.76 所以1.1<x<1.2 因此x 的整数部分是1,十分位是1 3 / 3

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开