第6课时全等三角形的性质和判定的应用【知识与技能】会综合用各种方法判定两个三角形全等.【过程与方法】经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力.【情感态度】学生积极参与三角形全等条件的探究过程,从中体会证明与成功的快乐,增强学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值.【教学重点】三角形全等的判定方法的综合运用.【教学难点】作辅助线构建全等三角形.一、情景导入,初步认知如图,两车从路段AB的两端同时出发,沿平行路线以相同的速度行驶,相同时间后分别到达C,D两地,若CE⊥AB,DF⊥AB,则C,D两地到路段AB的距离相等吗?为什么?二、合作探究,探索新知如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.【归纳结论】(1)先证明BC=EF,再根据S.S.S.即可证明;(2)AB∥DE,AC∥DF,根据全等三角形的性质即可证明.三、运用新知,深化理解1.教材P86例10.2.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连结D1B,求∠E1D1B的度数.【分析】根据直角三角形两锐角互余求出∠DCE=60°,由旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C-∠CD1E1计算即可得解.解: ∠CED=90°,∠D=30°,∴∠DCE=60°, △DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°-15°=45°,∴∠BCD1=∠A,在△ABC和△CD1B中,AC=CB,∠A=∠BCD1,AB=CD1,∴△ABC≌△CD1B(S.A.S.),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C-∠CD1E1=45°-30°=15°.3.如图,已知BE与CD相交于点A,M为BC的中点,∠1=∠2,AB=AC,求证:∠DBM=∠ECM.【分析】连结MA,可证得△ABM≌△ACM,可得出∠MAB=∠MAC,∠MAD=∠MAE,由题干中的条件可得∠AMD=∠AME,可证得△AMD≌△AME,得MD=ME,再证明△MBD≌△MCE即可得出结论.证明:如图,连结MA. AB=AC,M为BC中点.在△ABM和△ACM中,AB=AC,BM=CM,AM=AM,∴△ABM≌△ACM(SSS),∴∠MAB=∠MAC,∠AMB=∠AMC,∴∠DAM=∠EAM, ∠1=∠2,∴∠AMD=∠AME.在△AMD和△AME中,∠DAM=∠EAM,AM=AM,∠AMD=∠AME,∴△AMD≌△AM...