教师备课笔记上课日期月日星期课题3.2圆的轴对称性(2)课型新授教学目标1.使学生掌握垂径定理及其推论,并会用垂径定理及其推论解决有关证明、计算和作图问题;2.使学生了解垂径定理及其推论在实际中的应用,培养学生把实际问题转化为数学问题的能力和计算能力,结合应用问题向学生进行爱国主义教育.重点和难点教学重点:垂径定理的两个推论是重点;教学难点:由定理推出推论1是难点.教具准备师生活动过程一、从学生原有的认知结构提出问题1.画图叙述垂径定理,并说出定理的题设和结论.(由学生叙述)2.结合图形,教师引导学生写出垂径定理的下述形式:题设结论指出:垂径定理是由两个条件推出三个结论,即由①②推出③④⑤.提问:如果把题设和结论中的5条适当互换,情况又会怎样呢?引出垂径定理推论的课题二、运用逆向思维方法探讨垂径定理的推论1.引导学生观察图形,选①③为题设,可得:由于一个圆的任意两条直径总是互相平分的,但是它们不一定是互相垂直的,所以要使上面的题设能够推出上面的结论,还必须加上“弦AB不是直径”这一条件.这个命题是否为真命题,需要证明,结合图形请同学叙述已知、求证,教师在黑板上写出.已知:在⊙O中,直径CD与弦AB(不是直径)相交于E,且E是AB的中点.求证:CD⊥AB,.分析:要证明CD⊥AB,即证OE⊥AB,而E是AB的中点,即证OE为AB的中垂线.由等腰三角形的性质可证之.利用垂径定理可知AC=BC,AD=BD.证明:连结OA,OB,则OA=OB,△AOB为等腰三角形.因为E是AB中点,所以OE⊥AB,即CD⊥AB,又因为CD是直径,所以序号2.(1)引导学生继续观察、思考,若选②③为题设,可得:(2)若选①④为题设,可得:最后,教师指出:如果垂径定理作为原命题,任意交换其中的一个题设和一个结论,即可得到一个原命题的逆命题,按照这样的方法,可以得到原命题的九个逆命题。3.根据上面具体的分析,在感性认识的基础上,引导学生用文字叙述其中最常用的三个命题,教师板书出垂径定理的推论1.推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧.4.垂径定理的推论2.在图的基础上,再加一条与弦AB平行的弦EF,请同学们观察、猜想,会有什么结论出现?三、应用举例,变式练习例1平分已知.引导学生画图,写已知、求作.已知:求作:的中点.分析:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.因...