温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2021
四川省
自贡市
中考
数学试卷
2021年四川省自贡市中考数学试卷
一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)自贡恐龙博物馆是世界三大恐龙遗址博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )
A.0.887×105 B.8.87×103 C.8.87×104 D.88.7×103
2.(4分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是( )
A.百 B.党 C.年 D.喜
3.(4分)下列运算正确的是( )
A.5a2﹣4a2=1 B.(﹣a2b3)2=a4b6
C.a9÷a3=a3 D.(a﹣2b)2=a2﹣4b2
4.(4分)下列图形中,是轴对称图形且对称轴条数最多的是( )
A. B. C. D.
5.(4分)如图,AC是正五边形ABCDE的对角线,∠ACD的度数是( )
A.72° B.36° C.74° D.88°
6.(4分)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:
人数(人)
9
16
14
11
时间(小时)
7
8
9
10
这些学生一周参加体育锻炼时间的众数、中位数分别是( )
A.16,15 B.11,15 C.8,8.5 D.8,9
7.(4分)已知x2﹣3x﹣12=0,则代数式﹣3x2+9x+5的值是( )
A.31 B.﹣31 C.41 D.﹣41
8.(4分)如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为( )
A.(0,5) B.(5,0) C.(6,0) D.(0,6)
9.(4分)已知蓄电池的电压为定值,使用蓄电池时,电流O(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )
A.函数解析式为I= B.蓄电池的电压是18V
C.当I≤10A时,R≥3.6Ω D.当R=6Ω时,I=4A
10.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点F,OE⊥AC于点E,若OE=3,OB=5,则CD的长度是( )
A.9.6 B.4 C.5 D.10
11.(4分)如图,在正方形ABCD中,AB=6,M是AD边上的一点,AM:MD=1:2.将△BMA沿BM对折至△BMN,连接DN,则DN的长是( )
A. B. C.3 D.
12.(4分)如图,直线y=﹣2x+2与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线y=﹣x+3于点Q,△OPQ绕点O顺时针旋转45°,边PQ扫过区域(阴影部分)面积的最大值是( )
A.π B.π C.π D.π
二、填空题(共6个小题,每小题4分,共24分)
13.(4分)请写出一个满足不等式x+>7的整数解 .
14.(4分)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 .
15.(4分)化简:﹣= .
16.(4分)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 .
17.(4分)如图,△ABC的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC的角平分线BD(不写作法,保留作图痕迹).
18.(4分)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 .
三、解答题(共8个题,共78分)
19.(8分)计算:﹣|﹣7|+(2﹣)0.
20.(8分)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.
21.(8分)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)
22.(8分)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
23.(10分)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.
(1)本次抽样调查的样本容量是 ,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
24.(10分)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
列表如下:
x
…
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
…
y
…
a
0
b
﹣2
﹣
﹣
…
(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
①当﹣2≤x≤2时,函数图象关于直线y=x对称;
②x=2时,函数有最小值,最小值为﹣2;
③﹣1<x<1时,函数y的值随x的增大而减小.
其中正确的是 .(请写出所有正确命题的番号)
(3)结合图象,请直接写出不等式>x的解集 .
25.(12分)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
(1)求证:∠DAE=∠DAC;
(2)求证:DF•AC=AD•DC;
(3)若sin∠C=,AD=4,求EF的长.
26.(14分)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.
(1)直接写出∠OCA的度数和线段AB的长(用a表示);
(2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为:4,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.
2021年四川省自贡市中考数学试卷
参考答案与试题解析
一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)
1.【解答】解:88700=8.87×104.
故选:C.
2.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.
故选:B.
3.【解答】解:A、5a2﹣4a2=a2,故A错误;
B、(﹣a2b3)2=(﹣1)2(a2)2(b3)2=a4b6,故B正确;
C、=a9﹣3=a6,故C错误;
D、由完全平方公式可得:(a﹣2b)2=a2﹣4ab+4b2,故D错误;
故选:B.
4.【解答】解:A.是轴对称图形,共有1条对称轴;
B.不是轴对称图形,没有对称轴;
C.不是轴对称图形,没有对称轴;
D.是轴对称图形,共有2条对称轴.
故选:D.
5.【解答】解:∵正五边形ABCDE,
∴每个内角为180°﹣360°÷5=108°,
∵AB=BC,
∴∠BCA=∠BAC=36°,
∴∠ACD=∠BCD﹣∠BCA=108°﹣36°=72°,
故选:A.
6.【解答】解:由于一共有50个数据,其中8小时的人数最多,有14人,
所以这组数据的众数为8小时,
这50个数据的第25、26个数据分别为8、9,
所以这组数据的中位数为=8.5(小时),
故选:C.
7.【解答】解:∵x2﹣3x﹣12=0,
∴x2﹣3x=12.
原式=﹣3(x2﹣3x)+5=﹣3×12+5=﹣36+5=﹣31.
故选:B.
8.【解答】解:根据已知可得:AB=AC=10,OA=8.
在Rt△ABO中,=6.
∴B(0,6).
故选:D.
9.【解答】解:设I=,
∵图象过(4,9),
∴k=36,
∴I=,
∴A,B均错误;
当I=10时,R=3.6,
由图象知:当I≤10A时,R≥3.6Ω,
∴C正确,符合题意;
当R=6时,I=6,
∴D错误,
故选:C.
10.【解答】解:∵OE⊥AC于点E.
∴AE=EC.
∵OE=3,OB=5.
∴AE=.
∴AC=8.
∵∠A=∠A,∠AEO=∠AFC.
∴△AEO∽△AFC.
∴,即:.
∴.
∵CD⊥AB.
∴CD=2CF==9.6.
故选:A.
11.【解答】解:连接AN交BM于点O,作NH⊥AD于点H.如图:
∵AB=6,AM:MD=1:2.
∴AM=2,MD=4.
∵四边形ABCD是正方形.
∴BM=.
根据折叠性质,AO⊥BM,AO=ON.AM=MN=2.
∴.
∴=.
∴AN=.
∵NH⊥AD.
∴AN2﹣AH2=MN2﹣MH2.
∴.
∴.
∴.
∴.
∴DN=.
故选:D.
12.【解答】解:设P(m,﹣2m+2),则Q(m,﹣m+3).
∴OP2=m2+(﹣2m+2)2=5m2﹣8m+4,OQ2=m2+(﹣m+3)2=2m2﹣6m+9.
∵△OPQ绕点O顺时针旋转45°.
∴△OPQ≌△OBC.∠QOC=∠POB=45°.
∴PQ扫过区域(阴影部分)面积S=S扇OQC﹣S扇OPB===.
当m=时,S的最大值为:.
故选:A.
二、填空题(共6个小题,每小题4分,共24分)
13.【解答】解:∵x+>7,
∴x>7﹣,
∵1<<2,
∴﹣2<﹣<﹣1,
∴7﹣2<7﹣<﹣1+7
∴5<7﹣<6,
故满足不等式x+>7的整数解可以为:6(答案不唯一).
故答案为:6(答案不唯一).
14.【解答】解:小彤这学期的体育成绩是90×30%+80×70%=83,
故答案为:83.
15.【解答】解:
=
=
=
=
=.
故答案为:.
16.【解答】解:由三个等式,得到规律:
5*3⊕6=301848可知:5×6 3×6 6×(5+3),
2*6⊕7=144256可知:2×7 6×7 7×(2+6),
9*2⊕5=451055可知:9×5 2×5 5×(9+2),
∴4*8⊕6=4×6 8×6 6×(4+8)=244872.
故答案为:244872.
17.【解答】解:如图,射线BD即为所求作.
18.【解答】解:当x≥k时,函数y=|x﹣k|=x﹣k,此时y随x的增大而增大,
而﹣1≤x≤3时,函数的最小值为k+3,
∴x=﹣1时取得最小值,即有﹣1﹣k=k+3,
解得k=﹣2,(此时﹣1≤x≤3,x≥k成立),
当x<k时,函数y=|x﹣k|=﹣x+k,此时y随x的增大而减小,
而﹣1≤x≤3时,函数的最小值为k+3,
∴x=3时取得最小值,即有﹣3+k=k+3,
此时无解,
故答案为:﹣2.
三、解答题(共8个题,共78分)
19.【解答】解:原式=5﹣7+1=﹣1.
20.【解答】解:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,
∴DF=BE,又AB∥CD,
∴四边形DEBF是平行四边形,
∴DE=BF.
21.【解答】解:由题意可知AB=24米,∠BDA=53°,
∴tan∠BDA===1.33,
∴AD=≈18.05.
∵tan∠CAD=tan30°===,
∴CD=18.05×≈10.4(米).
故办公楼的高度约为10.4米.
22.【解答】解:设A型机平均每小时运送快递x件,则B型机平均每小时运送快递(x﹣20)件,
根据题意得:,
解得:x=70,
经检验,x=70是原分式方程的根,且符合题意,
∴70﹣20=50,
答:A型机平均每小时运送快递70件,B型机平均每小时运送快递50件.
23.【解答】解:(1)∵由条形统计图可得C等级的人数为25人,由扇形统计图可得C等级的人数占比为25%,
∴样本容量为25%,25÷25%=100.
补全条形统计图如下:
故答案为:100.
(2)D等级的学生有:100×5%=5(人).
由题意画出树状图如下:
由树状图可得,恰好回访到一男一女的概率为=.
(3)∵样本中A(优秀)的占比为35%,
∴可以估计该校2000名学生中的A(优秀)的占比为35%.
∴估计该校竞赛成绩“优秀”的学生人数为:2000×35%=700(人).
24.【解答】解:(1)把x=﹣2代入y=﹣得,y=﹣=2,
把x=1代入y=﹣得,y=﹣=﹣,
∴a=2,b=﹣,
函数y=﹣的图象如图所示:
(2)观察函数y=﹣的图象,
①当﹣2≤x≤2时,函数图象关于直线y=x对称;正确;
②x=2时,函数有最小值,最小值为﹣2;正确;
③﹣1<x<1时,函数y的值随x的增大而减小,正确.
故答案为①②③;
(3)由图象可知,不等式>x的解集为x<0.
25.【解答】(1)证明:如图,连接OD.
∵CD是⊙O的切线,
∴OD⊥EC,
∵AE⊥CE,
∴AE∥OD,
∴∠EAD=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAE=∠DAC.
(2)证明:如图,连接BF.
∵BF是直径,
∴∠AFB=90°,
∵AE⊥EC,
∴∠AFB=∠E=90°,
∴BF∥EC,
∴∠ABF=∠C,
∵∠ADF=∠ABF,
∴∠ADF=∠C,
∵∠DAF=∠DAC,
∴△DAF∽△CAD,
∴=,
∴DF•AC=AD•DC.
(3)解:过点D作DH⊥AC于H.
∵CD是⊙O的切线,
∴∠ODC=90°,
∵sin∠C==,
∴可以假设OD=k,OC=4k,则OA=OD=k,CD=k,
∵•OD•DC=•OC•DH,
∴DH=k,
∴OH==k,
∴AH=OA+OH=k,
∵AD2=AH2+DH2,
∴(4)2=(k)2+(k)2
∴k=8或﹣8(舍弃),
∴DH=2,AC=5k=40,DC=8,
∵DF•AC=AD•DC,
∴DF=4,
∵∠ADE=∠DAC+∠C=∠ADF+∠EDF,∠ADF=∠C,
∴∠EDF=∠DAC,
∴sin∠EDF=sin∠DAH,
∴=,
∴=,
∴EF=6.
26.【解答】解:(1)定义抛物线y=(x+1)(x﹣a),令y=0,可得x=﹣1或a,
∴B(﹣1,0),A(a,0),
令x=0,得到y=﹣a,
∴C(0,﹣a),
∴OA=OC=a,OB=1,
∴AB=1+a.
∵∠AOC=90°,
∴∠OCA=45°.
(2)∵△AOC是等腰直角三角形,
∴∠OAC=45°,
∵点D是△ABC的外心,
∴∠BDC=2∠CAB=90°,DB=DC,
∴△BDC也是等腰直角三角形,
∴△DBC∽△OAC,
∴=,
∴=,
解得a=2或﹣2(舍弃),
∴抛物线的解析式为y=(x+1)(x﹣2)=x2﹣x﹣2.
(3)作点C关于抛物线的对称轴x=的对称点C′,连接AC′.
∵C(0,﹣2),C′(1,﹣2),
∴PC∥AB,
∵BC,AC′关于直线x=对称,
∴CB=AC,
∴四边形ABCP是等腰梯形,
∴∠CBA=∠C′AB,
∵∠DBC=∠OAC=45°,
∴∠ABD=∠CAC′,
∴当点P与点C′重合时满足条件,
∴P(1,﹣2).
作点P关于直线AC的对称点E(0,﹣1),则∠EAC=∠PAC=∠ABD,作直线AE交抛物线于P′,点P′满足条件,
∵A(2,0),E(0,﹣1),
∴直线AE的解析式为y=x﹣1,
由,解得或,
∴P′(﹣,﹣),
综上所述,满足条件的点P的坐标为(1,﹣2)或(﹣,﹣).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/6/18 10:22:55;用户:柯瑞;邮箱:ainixiaoke00@;学号:500557
第14页(共14页)