温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
不等式
知识点
归纳
第九章 不等式与不等式组
一、知识结构图
二、知识要点
(一、)不等式的概念
1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质
不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果,那么;如果,那么 ;
不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果,那么(或);如果,不等号那么(或);
不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果,那么(或);如果,那么(或);
解不等式思想——就是要将不等式逐步转化为xa或x<a的形式。
(注:①传递性:若a>b,b>c,则a>c. ②利用不等式的基本性质可以解简单的不等式)
(三、)一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、任何一个一元一次不等式都可以化为最简形式:或(a≠0)的形式。
3、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题) 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
(四、)一元一次不等式组
1、一元一次不等式组的概念:
几个一元一次不等式合在一起,就组成了一个一元一次不等式组。不等式组中含有一个未知数,并且所含未知数的项的次数都是1。
2、使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。
3、不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法:
解一元一次不等式组的一般步骤:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。
6、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
(五、)一元一次不等式(组)的应用
一般方法步骤:
(1)审:分析题意,找出不等关系;
(2)设:设未知数;
(3)列:列出不等式组;
(4)解:解不等式组;
(5)检验:从不等式组的解集中找出符合题意的答案;
(6)答:写出问题答案。