《第二十六章反比例函数》简介课程教材研究所本章包括反比例函数的概念、图象及其性质.本章首先从现实世界中具有反比例关系的实例出发,从函数角度描述反比例关系,再次经历用函数研究变化规律的过程,认识反比例函数(k为常数,k≠0)中两个变量x,y之间的依赖关系:在变量y随变量x的变化而变化的过程中,它们的积xy始终保持不变(xy=k);然后用“描点法”画出反比例函数的图象,观察图象并结合解析式,得出反比例函数的性质;最后运用反比例函数解决简单的实际问题.本章教学时间约需8课时,具体安排如下(仅供参考):26.反比例函数3课时26.2实际问题与反比例函数4课时数学活动小结1课时一、教科书内容和课程学习目标1.本章知识结构本章知识结构如下图所示:2.教科书内容反比例函数是《义务教育数学课程标准(2011年版)》“数与代数”领域的内容.其学习基础是函数的概念、函数的表示方法以及反比例关系;我们类比正比例函数、一次函数和二次函数的研究方法,展开反比函数的概念、图象、性质及其应用.章引言通过生活中常见的路程、速度与时间的关系式s=vt,指出在路程s一定的前提下,平均速度v与运行时间t的成反比例关系.当从函数角度进行研究时,平均速度v随着运动时间t的变化而变化的规律可以用解析式表示,引出本章学习内容——反比例函数.本章分两节.“26.1反比例函数”的内容是反比例函数的概念、图象和性质.本节首先给出“思考”栏目中现实世界和数学中具有反比例关系的三个问题(1)距离一定时,平均速度v随着运动时间t的关系;(2)矩形面积s一定时,矩形长y与宽x的关系;(3)人均占有土地面积与总人口之间的关系,指出这三个问题中均有三个量,其中一个量不变,另外两个量中一个量随着另一量的变化而变化,而且对于一个量的每一个确定的值,另一个量都有唯一确定的值与它对应因此上述问题中两个量之间具有函数关系,而且这个函数关系可以用形如的形式表示,从而给出反比例函数的概念:形如(k为常数,k≠0)的函数,并指出反比例函数是描述具有反比例变化规律的数学模型.为了巩固反比例函数的概念,教科书例1是由反比例函数的自变量和因变量的值,确定常数k的值,从而得到反比例函数的解析式;根据反比例函数的解析式,我们就可以得到与任意自变量对应的函数值.显然,反比例函数的解析式由常数k唯一确定.根据以往研究函数的经验,对于具体的函数,如一次函数、二次函数等,我们都是在其概念的基础上,由其解析式,通过描点...