数学N单元选修4系列15.[2014·广东卷](几何证明选讲选做题)如图13所示,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=________.图1315.9[解析]本题考查相似三角形的性质定理,面积比等于相似比的平方. EB=2AE,∴AE=AB=CD.又 四边形ABCD是平行四边形,∴△AEF∽△CDF,∴==9.15.[2014·湖北卷](选修41:几何证明选讲)如图13,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=________.图1315.4[解析]由切线长定理得QA2=QC·QD=1×(1+3)=4,解得QA=2.故PB=PA=2QA=4.12.[2014·湖南卷]如图13所示,已知AB,BC是⊙O的两条弦,AO⊥BC,AB=,BC=2,则⊙O的半径等于________.图1312.[解析]设圆的半径为r,记AO与BC交于点D,依题可知AD=1.由相交弦定理可得1×(2r-1)=×,解得r=.22.[2014·辽宁卷]选修41:几何证明选讲如图17所示,EP交圆于E,C两点,PD切圆于D,G为CE上—点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.图1722.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又因为∠PGD=∠EGA,所以∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.又AF⊥EP,所以∠PFA=90°,所以∠BDA=90°,故AB为圆的直径.(2)连接BC,DC.[来源:学科网]由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而得Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角,所以ED为直径,又由(1)知AB为圆的直径,所以ED=AB.22.[2014·新课标全国卷Ⅰ]选修41:几何证明选讲如图16,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图16(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E,由(1)知,∠D=∠E,所以△ADE为等边三角形.22.[2014·新课标全国卷Ⅱ]选修41:几何证明选讲如图14,P是⊙O外一点...