17.2勾股定理的逆定理(第2课时)人教版数学八年级下册17.2勾股定理的逆定理/工厂生产的产品都有一定的规格要求,如图所示:该模板中的AB、BC相交成直角才符合规定.你能测出这个零件是否合格呢?(身边只有刻度尺)ABC导入新知17.2勾股定理的逆定理/在军事和航海上经常要确定方向和位置,从而常需要使用一些数学知识和方法,其中勾股定理的逆定理经常会被用到,这节课让我们一起来学习吧!导入新知17.2勾股定理的逆定理/2.进一步加深对勾股定理与其逆定理之间关系的认识.1.应用勾股定理的逆定理解决实际问题.学习目标3.将实际问题转化成用勾股定理的逆定理解决的数学问题.17.2勾股定理的逆定理/12如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NEPQR探究新知知识点1利用勾股定理的逆定理解答角度问题【思考】1.认真读题,找已知是什么?“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如下图.17.2勾股定理的逆定理/12NEPQR16×1.5=2412×1.5=18303.由于我们现在所能得到的都是线段长,要求角,由此我们想到利用什么思想?要解决的问题是求出两艘船航向所成角.勾股定理逆定理.探究新知【思考】2.需要解决的问题是什么?转化的思想.4.知道线段长度,通过线段长度来求角的度数,我们可以利用什么转化呢?17.2勾股定理的逆定理/解:根据题意得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里. 242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航”号沿东北方向航行可知∠1=45°.∴∠2=45°,即“海天”号沿西北方向航行.NEPQR12探究新知方法点拨:解决实际问题的步骤:①标注有用信息,明确已知和所求;②构建几何模型(从整体到局部);③应用数学知识求解.17.2勾股定理的逆定理/在寻找马航MH370航班过程中,两艘搜救舰艇接到消息,在海面上有疑似漂浮目标A、B.接到消息后,一艘舰艇以16海里/时的速度离开港口O(如图所示)向北偏东40°方向航行,另一艘舰艇在同时以12海里/时的速度向北偏西一定角度的航向行驶,已知它们离港口一个半小时后相距30海里,问另一艘舰艇的航行方向是北偏西多少度?巩固练习17.2勾股定理的逆定理/解:由题意得,OB=12×1.5=18海里,OA=16×1.5=24海里,又 AB=30...