必修3(第二章统计)知识结构收集数据(随机抽样)整理、分析数据估计、推断简单随机抽样分层抽样系统抽样用样本估计总体变量间的相关关系用样本的频率分布估计总体分布用样本数字特征估计总体数字特征线性回归分析回顾复回顾复习习1、两个变量的关系不相关相关关系函数关系线性相关非线性相关问题1:现实生活中两个变量间的关系有哪些呢?相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。回顾复回顾复习习思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系函数关系是一种理想的关系模型相关关系在现实生活中大量存在,是更一般的情况问题2:对于线性相关的两个变量用什么方法来刻画之间的关系呢?2、最小二乘估计最小二乘估计下的线性回归方程:ˆˆˆybxa1122211()()ˆ()nniiiiiinniiiixXyYxynxybXXxnxˆˆaYbXniixnx11niiyny11回归直线必过样本点的中心),(yx3、回归分析的基本步骤:画散点图求回归方程预报、决策这种方法称为回归分析.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修1-2——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果自学指自学指导导1:结合例1得出线性回归模型及随机误差,并且区分函数模型和回归模型。2:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?3:如何发现数据中的错误?如何衡量随机模型的拟合效果?4:结合例1思考:用回归方程预报体重时应注意什么?5:归纳建立回归模型的基本步骤。阅读课本阅读课本11页页——66页思考回答下列问题页思考回答下列问题(注意:时间(注意:时间1212分钟)分钟)例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据女大学生的身高预报体重的回归方程,并预报一名身高为172cm的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差...