第一章三角函数§1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象明目标、知重点明目标知重点填要点记疑点探要点究所然内容索引010203当堂测查疑缺04明目标、知重点1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.明目标、知重点明目标、知重点1.正弦曲线、余弦曲线正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫曲线和曲线.正弦填要点·记疑点余弦明目标、知重点2.“五点法”画图画正弦函数y=sinx,x∈[0,2π]的图象,五个关键点是;画余弦函数y=cosx,x∈[0,2π]的图象,五个关键点是(0,0),π2,1,(π,0),32π,-1,(2π,0)(0,1),π2,0,(π,-1),32π,0,(2π,1)明目标、知重点3.正弦、余弦曲线的联系依据诱导公式cosx=sin,要得到y=cosx的图象,只需把y=sinx的图象向平移个单位长度即可.左x+π2π2明目标、知重点探要点·究所然情境导学遇到一个新函数,它总具有许多基本性质,要直观、全面了解基本特性,自然是从它的图象入手,画出它的图象,观察图象的形状,看看它有什么特殊点,并借助它的图象研究它的性质,如:值域、单调性、奇偶性、最值等.我们今天就学习正弦函数、余弦函数的图象.明目标、知重点探究点一几何法作正弦曲线思考1在直角坐标系中,如何用正弦线比较精确地画出y=sinx,x∈[0,2π]内的图象?答①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于2π等角的正弦线.0,π6,π3,π2,…,明目标、知重点③找横坐标:把x轴上从0到2π(2π≈6.28)这一段分成12等份.④找纵坐标:将正弦线对应平移,即可得到相应点的纵坐标.⑤连线:用平滑的曲线将这些点依次从左到右连接起来,即得y=sinx,x∈[0,2π]的图象.明目标、知重点思考2如何由y=sinx,x∈[0,2π]的图象得到y=sinx,x∈R的图象?答因为终边相同的角有相同的三角函数值,所以函数y=sinx,x∈[2kπ,2(k+1)π),k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2π)的图象的形状完全一致.于是我们只要将函数y=sinx,x∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象.明目标、知...