2.2.2对数函数及其性质(第2课时)对数函数图象与性质图象定义域值域性质定点单调性a>10<a<1oyx(1,0))1(logaxyaoyx(1,0))10(logaxya),0(R过定点(1,0),即x=1时,y=loga1=0在上是增函数),0(在上是减函数),0(当x>1时,当00y<0当x>1时,当00logayx2logyx3logyx12logyx13logyx观察下列四个函数的图象,能否总结出其图象特征?1loglog与的图象关于轴对称aayyxxx例3比较下列各组数中两个值的大小。0.30.3(2)log1.8,log2.722(1)log3.4,log8.5四、例题分析(3)log5.1,log5.9(0,1)aaaa3485..且,解:2(1)21,log(0,)底数函数在单调递增,yxQ223485log.log.oyx2logyx10.3(2)00.31log,在(0,+)上是单调递减,yxQ1827..且,03031827..log.log.同底对数值比较大小:利用对数函数的单调性比较例2比较下列各组数中两个值的大小。0.30.3(2)log1.8,log2.722(1)log3.4,log8.5四、例题分析(3)log5.1,log5.9(0,1)aaaa同底对数值比较大小:若底数未确定,需分类讨论(3)log(0,)5.15.9log5.1log15.9在上是单调递当增,且;时aaaxayQlog(0,)5.15.9log5.1l905.1og函数在上是单调递时减,且当aaayxaQ20.5(4)log3,log4例2比较下列各组数中两个值的大小。0.30.3(2)log1.8,log2.722(1)log3.4,log8.5四、例题分析(3)log5.1,log5.9(0,1)aaaa底数不同,真数不同对数值比较大小:借助中间量“0”005541410..loglog;且2(4)log(0,)在单调递增,yxQ2231310loglog;且,0.5log(0,)又在上单调递减,yxQ20.5log3log401loga20.5(4)log3,log43、比较对数值的大小——方法总结五、新课讲解1,(log)(lo301(:g))中底数不同真数不同间量“”“对数比较大小借助”,或aaa(2)对数值比较大小:若底数未确定同底,需分类讨论(1)对数值比较大小:利用对数函同底数单调性比较六、练习巩固3030333112156241563211..()log()log()()log()log()()log()xxxxx、解下列不等式、421101()log()axaa,其中且31310()log(,)yx解:底数,函数在上单调递增,3321562156log()log()xxxx,,73,x解得73{|}xx即不等式的解集是421()log()logaaxa解:原不等式可化为101212log(,);aayxaxax当时,函数在上单调递增,,解得0101212log(,);aayxaxax...