2.1.2演绎推理学习目标1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理与演绎推理之间的区别和联系.课前自主学案1.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,则第100项是__.2.在平面几何中,命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题“如果两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补”,这个类比命题是__命题(填“真”或“假”).温故夯基14假1.演绎推理(1)含义:从一般性的原理出发,推出______________的结论的推理.(2)特点:由________________.(3)一般模式:______,它包括:______——已知的一般原理;小前提——所研究的特殊情况;____——根据一般的原理,对特殊情况做出的判断.知新益能某个特殊情况下一般到特殊的推理三段论大前提结论2.“三段论”的常用格式大前提:______,小前提:______,结论:______.M是PS是MS是P“方程x2+bx-1=0有两个不等实根”是“三段论”的推理形式吗?提示:是.不过省略了大前提和小前提.大前提:若一元二次方程的判别式大于0,则方程有两个不等实根.小前提:方程x2+bx-1=0的判别式Δ=b2+4>0.问题探究课堂互动讲练把演绎推理写成三段论的形式“三段论”是演绎推理的一般模式,它包括:大前提,小前提和结论三段.考点突破把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100℃,所以在一个标准大气压下把水加热到100℃时,水会沸腾;(2)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除;(3)三角函数都是周期函数,y=tanα是三角函数,因此y=tanα是周期函数.例1【思路点拨】解答本题的关键在于分清大、小前提和结论,还要准确利用三段论的形式.【解】(1)在一个标准大气压下,水的沸点是100℃,大前提在一个标准大气压下把水加热到100℃,小前提水会沸腾.结论(2)一切奇数都不能被2整除,大前提2100+1是奇数,小前提2100+1不能被2整除.结论(3)三角函数都是周期函数,大前提y=tanα是三角函数,小前提y=tanα是周期函数.结论【思维总结】用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可大前提与小前提都省略,在寻找大前提时,可找一个...