2.4《圆锥曲线与方程全章小结》复习目标复习目标1)掌握椭圆的定义,标准方程和椭圆的几何性质2)掌握双曲线的定义,标准方程和双曲线的几何性质3)掌握抛物线的定义,标准方程和抛物线的几何性质4)能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用。(1)求长轴与短轴之和为20,焦距为的椭圆的标准方程_________________4522(1)13616xy2211636xy和(2)求与双曲线有共同渐近线,且过点(-3,)的双曲线方程;221916xy23224(2)194xy(3)一动圆M和直线l:x=-2相切,并且经过点F(2,0),则圆心M的轨迹方程是.28yx课前热身一、知识回顾一、知识回顾圆锥曲线椭圆双曲线抛物线标准方程几何性质标准方程几何性质标准方程几何性质第二定义第二定义统一定义综合应用椭圆双曲线抛物线几何条件与两个定点的距离的和等于常数与两个定点的距离的差的绝对值等于常数与一个定点和一条定直线的距离相等标准方程图形顶点坐标(±a,0),(0,±b)(±a,0)(0,0))0(12222babyax)0,0(12222babyax)0(22ppxy椭圆、双曲线、抛物线的标准方程和图形性质椭圆双曲线抛物线对称性X轴,长轴长2a,Y轴,短轴长2bX轴,实轴长2a,Y轴,虚轴长2bX轴焦点坐标(±c,0)c2=a2-b2(±c,0)c2=a2+b2(p/2,0)离心率e=c/a01e=1准线方程x=±a2/cx=±a2/cx=-p/2渐近线方程y=±(b/a)x椭圆、双曲线、抛物线的标准方程和图形性质例1.求双曲线9y–16x=144的实半轴与虚半轴长,焦点坐标,离心率及渐进线方程.22故渐进线方程为:y=±-x解:把方程化成标准方程:---=1y16x2522故实半轴长a=4,虚半轴长b=3∴c=√16+9=5.________∴e=-5434二、应用举例例2.直线y=x-2与抛物线y2=2x相交于A、B求证:OAOB⊥。证法1:将y=x-2代入y2=2x中,得(x-2)2=2x化简得x2-6x+4=0解得:53x则:15(35,15);(35,15)yAB,5351,5351OAOBkk1595153515351OAOBkk∴OAOB⊥证法2:同证法1得方程x2-6x+4=0由一元二次方程根与系数的关系,可知x1+x2=6,x1·x2=4∴OAOB⊥ y1=x1-2,y2=x2-2;∴y1·y2=(x1-2)(x2-2)=x1·x2-2(x1+x2)+4=4-12+4=-414421212211xxyyxyxykkOBOA例3.一圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线解法1:如图:设动圆圆心为P(x,y),半径为R,两已知圆圆心为O1、O2。分别将两已知圆的方程x2+y2+6x+5=0x2+y2-6x-91...