第2课时等差数列习题课【题型探究】类型一等差数列前n项和的性质【典例】1.等差数列{an}和{bn}的前n项和分别为Sn和Tn,且则=()nnS2nT3n1,55ab29207A.B.C.D.3143192.已知等差数列{an}的前n项和为Sn,且那么的值为()3.(2015·唐山高二检测)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3B.4C.5D.648S1S3,816SS1113A.B.C.D.83910【解题探究】1.典例1中,如何转化为的形式?提示:2.典例2中,S4,S8-S4,S12-S8,S16-S12是否成等差数列?提示:S4,S8-S4,S12-S8,S16-S12成等差数列.55abnnST195519919551999aaa2aaaS2.9bbb2bbbT23.典例3中,联系题目条件,可以考虑应用等差数列前n项和的哪个性质?提示:应用数列是等差数列.nS{}n【解析】1.选B.由题意得195519919551999aaa2aaaS2992.9bbb2bbbT3911422.选D.由可设S4=t,S8=3t,t≠0,所以S8-S4=3t-t=2t,因为等差数列{an}的前n项和为Sn,所以S4,S8-S4,S12-S8,S16-S12成等差数列,所以S12-S8=3t,S16-S12=4t,所以S12=6t,S16=10t.所以48S1S3,816S3t3.S10t103.选C.因为数列{an}为等差数列,且前n项和为Sn,所以数列也为等差数列.所以解得m=5,经检验为原方程的解.nS{}nm1m1mSS2S230m1m1mm1m1+=,即+=,【延伸探究】若典例1条件不变,试计算【解析】77a.b1137711313113771131313aaa2aaaS213bbb2bbbT221313.313120【方法技巧】与等差数列前n项和Sn有关的性质(1)数列Sn,S2n-Sn,S3n-S2n,…是公差为n2d的等差数列.(2)数列为等差数列.nS{}n(3)等差数列{an}前n项和公式为由等差数列的性质可得:(4)若两个等差数列{an},{bn}的前n项和分别为Sn,则1nnnaaS2,12m2mmm112m12m1m12m(aa)Smaa2(2m1)(aa)S(2m1)a.2,n2n1n2n1aS.bT--【变式训练】1.(2015·黄山高二检测)等差数列的通项公式是an=1-2n,其前n项和为Sn,则数列的前11项和为()A.-45B.-50C.-55D.-66nS{}n【解析】选D.因为所以所以数列是首项为-1,公差为-1的等差数列,其前11项和为-(1+2+3+…+11)==-66.21nnn(aa)n(112n)Sn22---,2nSnnnn--,nS{}n11(111)2-2.等差数列{an}的前n项和为Sn,S3=-6,S18-S15=18,则S18等于()A.36B.18C.72D.9【解题指南】根据S3,S6-S3,S9-S6,…,S18-S15成等差数列计算.【解析】选A.由S3,S6-...