18.1.2平行四边形判定第十八章平行四边形优翼课件导入新课讲授新课当堂练习课堂小结学练优八年级数学下(RJ)教学课件第2课时平行四边形的判定(2)学习目标1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.(重点)2.会进行平行四边形的性质与判定的综合运用.(难点)数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?情景引入导入新课只要使互相平行的夹在铁轨之间的枕木长相等就可以了那这是为什么呢?会不会跟我们学过的平行四边形有关呢?问题我们知道,两组对分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?猜想1:一组对边相等的四边形是平行四边形.讲授新课一组对边平行且相等的四边形是平行四边形一等腰梯形不是平行四边形,因而此猜想错误.猜想2:一组对边平行的四边形是平行四边形.梯形的上下底平行,但不是平行四边形,因而此猜想错误.BA活动如图,将线段AB向右平移BC长度后得到线段CD,连接AD,BC,由此你能猜想四边形ABCD的形状吗?DC四边形ABCD是平行四边形猜想3:一组对边平行且相等的四边形是平行四边形.你能证明吗?ABCD证明思路作对角线构造全等三角形一组对应边相等两组对边分别相等四边形ABCD是平行四边形如图,在四边形如图,在四边形ABCDABCD中,中,ABAB==CDCD且且ABCD∥ABCD∥,,求证:四边形求证:四边形ABCDABCD是平行四边形是平行四边形..证一证AABBCCDD2211证明:连接AC. ABCD∥,∴∠1=2.∠在△在△ABCABC和△和△CDACDA中中,,ABAB==CDCD,,ACAC==CACA,,∠∠1=2∠1=2∠,,∴△∴△ABCABC≌≌△△CDACDA(SAS)(SAS),,∴∴BCBC==DADA..又又 ABAB==CDCD,,∴∴四边形四边形ABCDABCD是平行四边形是平行四边形..平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形.归纳总结几何语言描述:在四边形ABCD中, ABCD∥,AB=CD,∴四边形ABCD是平行四边形.BDAC典例精析证明: 四边形ABCD是平行四边形,∴AB=CD,EB//FD.又 EB=AB,FD=CD,∴EB=FD.∴四边形EBFD是平行四边形.1212例1如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.例2如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.证明: AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE...