新人教版八(上)第15章分式课件15.2.1分式的乘除(二)分式的乘方22bax321x计算12)1(441)3()44(3)2(1)1(222xxxxxxxyxxybba359253352:.42xxxxx计算例3592533522xxxxx353)35)(35(352xxxxxx322x解例题讲解na.1.是什么意思?表示什么?表示什么?2.计算an2)3(nma)(nab)(2)2(ba中的可以是数,也可以是整式,那可不可以是一个分式呢?即两个整式的商的次方?aanan?)(nba即mnannba92244baba1032bababa思考2ba10ba3babababbaa22bababababbbaaa33ba10bababa1010bbbaaa1010ba归纳nba个nbababa个个nnbbbaaannbannnbaba分式的乘方要把分子、分母分别乘方.当n是正整数时•.nbananb例题1:2)23().1(yx3)2().2(cab注意:其中表示分式的分子,表示分式的分母,且ab0b3)().3(yxxy222222224923)(2)3(yxyxyx3333338)2()()2(cbacabcab33333)()()(yxyxyxxy例题2:22)32).(1(cba3222)2).(2(cbaba323222)34()23(.)3(nmmnmnya2332)()2).(4(cbabcaxyyxyxxy32)()).(5(例题2:22)32).(1(cba3222)2).(2(cbaba3232)()(cba66)(cba222)3()2(cba22494cba分子.分母如有多项式,则可先分解因式•例题2:323222)34()23().3(nmmnmnya32332222)3()4()2()3(nmmnmnya693333224423443nmnmnmya81133344324343nmnmya5844316nmya先算乘方,再算乘法例题2:2332)()2).(4(cbabca2263368cbacba38bc2623368baccba265368bacba先算乘方,再算除法例题2:xyyxyxxy32)()).(5(yxyxyxyx322)()()(322)()()(yxyxyxyx))((1yxyx221yx例题3:43222)()()(.)1(xyxyyx2332)2(2)().2(acdacdba•例题3:43222)()()(xyxyyx43222)()()(.)1(xyxyyx443624xyxyyx443624yxxyyx5x2332)2(2)().2(acdacdba223933642acdadcba223932642acaddcba6338cdba练习1P18-2练习2.23.2;.132422...