温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2003
2014
北京市
中考
数学试题
分类
汇编
专题
16
压轴
原卷版
网址:
1.(2003年北京市4分)三峡工程在6月1日于6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是【 】
2.(2004年北京市4分)如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩
形,设BC=a,EF=b,NH=c,则下列各式中正确的是【 】
(A)a>b>c (B)a=b=c (C)c>a>b (D)b>c>a
3.(2005年北京市4分)如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图象中,能正确反映y与x的函数关系的是【 】
4.(2006年北京市大纲4分)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=1,AB=,BC=2,
P是BC边上的一个动点(点P与点B不重合),DE⊥AP于点E。设AP=x,DE=y。在下列图象中,能正确
反映y与x的函数关系的是【 】
5.(2006年北京市课标4分)将如图所示的圆心角为的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是【 】
6.(2007年北京市4分)下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是【 】
7.(2008年北京市4分)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如左图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【 】
8.(2009年北京市4分) 如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且
∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=,DE=,下列中图
象中,能表示与的函数关系式的图象大致是【 】
9.(2010年北京市4分)美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个符合上述要求,那么这个示意图是【 】
10.(2011年北京市4分)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示与x的函数关系图象大致是【 】
11.(2012年北京市4分) 小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过
点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间
为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这
个固定位置可能是图1中的【 】
A.点M B.点N C.点P D.点Q
12.(2013年北京市4分) 如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的
为x,△APO面积为y,则下列图象中,能表示y与x的函数关系的图象大致是【 】
13.(2014年北京市3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如下图所示,则该封闭图形可能是【 】
1.(2003年北京市4分)观察下列顺序排列的等式:
9×0+1=1
9×1+2=11
9×2+3=21
9×3+4=31
9×4+5=41
…
猜想:第n个等式(n为正整数)应为 ▲ 。
2.(2004年北京市4分)我们学习过反比例函数.例如,当矩形面积S一定时,长a是宽b的反比例函
数,其函数关系式可以写为(S为常数,S≠0).
请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数
关系式.
实例: ▲ ;
函数关系式: ▲ .
3.(2005年北京市4分)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为
▲ .
4.(2006年北京市大纲4分)如果,,那么的值等于 ▲ 。
5.(2006年北京市课标4分)如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=13cm,BC=10cm,DE=5cm,则图中阴影部分的面积为 ▲ .
6.(2007年北京市4分)下图是对称中心为点O的正六边形。如果用一个含30°角的直角三角板的角,借助点O(使角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能的值是 ▲ 。
7.(2008年北京市4分)一组按规律排列的式子:,,,,…(),其中第7个式子是 ▲ ,第个式子是 ▲ (为正整数).
8.(2009年北京市4分)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸
片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、
BC边的中点,则A′N= ▲ ; 若M、N分别是AD、BC边的上距DC最近的n等分点(,且n
为整数),则A′N= ▲ (用含有n的式子表示)
9.(2010年北京市4分)下图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ▲ ;当字母C第201次出现时,恰好数到的数是 ▲ ;当字母C第次出现时(为正整数),恰好数到的数是 ▲ (用含的代数式表示).
10.(2011年北京市4分)在下表中,我们把第i行第j列的数记为i,j(其中i,j都是不大于5的正整数),对于表中的每个数i,j,规定如下:当i≥j时,i,j=1;当i<j时,i,j=0.例如:当i=2,j=1时,i,j=2,1=1.按此规定,1,3= ▲ ;表中的25个数中,共有 ▲ 个1;计算1,1•i,1+1,2•i,2+1,3•i,3+1,4•i,4+1,5•i,5的值为 ▲ .
1,1
1,2
1,3
1,4
1,5
2,1
2,2
2,3
2,4
2,5
3,1
3,2
3,3
3,4
3,5
4,1
4,2
4,3
4,4
4,5
5,1
5,2
5,3
5,4
5,5
11.(2012年北京市4分)在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点.已知
点A(0,4),点B是轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,
点B的横坐标的所有可能值是 ▲ ;当点B的横坐标为4n(n为正整数)时,m= ▲ (用含
n的代数式表示.)
12.(2013年北京市4分)如图,在平面直角坐标系中,已知直线l:,双曲线。在
l上取点A1,过点A1作轴的垂线交双曲线于点B1,过点B1作轴的垂线交于点A2,请继续操作并探
究:过点A2作轴的垂线交双曲线于点B2,过点B2作轴的垂线交于点A3,…,这样依次得到上的点
A1,A2,A3,…,An,…。记点An的横坐标为,若,则= ▲ ,= ▲ ;若
要将上述操作无限次地进行下去,则不能取的值是 ▲ .
13.(2014年北京市4分)在平面直角坐标系中,对于点,我们把点叫做点P的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(3,1),则点的坐标为 ▲ ,点的坐标为 ▲ ;若点的坐标为(a,b),对于任意的正整数n,点均在x轴上方,则a,b应满足的条件为 ▲ .
1.(2003年北京市8分)已知:在ΔABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE∶FD=4∶3。
(1)求证:AF=DF.
(2)求∠AED的余弦值;
(3)如果BD=10,求ΔABC的面积。
3.(2004年北京市8分)已知:如图1,∠ACG=900,AC=2,点B为CG边上的一个动点,连结AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.
⑴ 当BC=时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;
⑵ 如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连结AH,
当∠CAB=∠BAD=∠DAH时,求BC的长.
4.(2004年北京市8分)已知:在平面直角坐标系xOy中,过点P(0,2)任作一条与抛物线y=ax2(a>0)
交于两点的直线,设交点分别为A、B.若∠AOB=90°,
⑴ 判断A、B两点纵坐标的乘积是否为一个确定的值,并说明理由;
⑵ 确定抛物线y=ax2(a>0)的解析式;
⑶ 当△AOB的面积为时,求直线AB的解析式.
5.(2005年北京市8分)已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).
6.(2005年北京市9分)已知:在平面直角坐标系xOy中,一次函数y=kx﹣4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.
7.(2006年北京市大纲8分)已知:AB是半圆O 的直径,点C在BA的延长线上运动(点C与点A不
重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E。
(1)求证:CD是半圆O的切线(图①);
(2)作EF⊥AB于点F(图②),猜想EF与已有的哪条线段的一半相等,并加以证明;
(3)在上述条件下,过点E作CB的平行线CD于点N,当NA与半圆O相切时(图③),求∠EOC的正
切值。
8.(2006年北京市大纲9分)已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B
的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连结BD并延长,交AC于点
E。
(1)用含m的代数式表示点A、B的坐标;
(2)求的值;
(3)当C、A两点到y轴的距离相等,且时,求抛物线和直线BE的解析式。
10.(2006年北京市课标8分)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为600时,这对600角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
11.(2007年北京市7分)在平面直角坐标系xOy中,抛物线经过P(,5),A(0,2)两点。
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;
(3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标。
12.(2007年北京市8分)我们知道:有两条边相等的三角形叫做等腰三角形。类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形。
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,若∠A=60°,∠DCB=∠EBC=∠A。请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A。探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论。
13.(2008年北京市7分)在平面直角坐标系xOy中,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.
14.(2008年北京市8分)请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出 的值(用含α的式子表示).
15.(2009年北京市8分)在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E
逆时针旋转得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转 得到线段EC1.
判断直线FC1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段
EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,
并写出自变量的取值范围.
16.(2009年北京市7分)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,),延长AC到点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)
17.(2010年北京市8分)在平面直角坐标系中,抛物线与轴的交点分别为原点O和点A,点B(2,)在这条抛物线上.
(1)求B点的坐标;
(2)点P在线段OA上,从O点出发向A点运动,过P点作轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动).
①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;
②若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点、N点也随之运动).若P点运动到秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻的值.
18.(2010年北京市7分)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=900时,依问题中的条件补全下图.
观察图形,AB与AC的数量关系为________________;
当推出∠DAC=150时,可进一步推出∠DBC的度数为_________;
可得到∠DBC与∠ABC度数的比值为_______________.
(2)当∠BAC≠900时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,
写出你的猜想并加以证明.
19.(2011年北京市7分)在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
20.(2011年北京市8分)如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;
(3)已知AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标的取值范围.
21.(2012年北京市7分)在中,,M是AC的中点,P是线段BM上的动点,
将线段PA绕点P顺时针旋转得到线段PQ。
(1) 若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,
并写出∠CDB的度数;
(2) 在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大
小(用含的代数式表示),并加以证明;
(3) 对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得
线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出的范围。
22.(2012年北京市8分)在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距
离”,给出如下定义:
若∣x1-x2∣≥∣y1-y2∣,则点P1与点P2的“非常距离”为∣x1-x2∣;
若∣x1-x2∣<∣y1-y2∣,则点P1与点P2的“非常距离”为∣y1-y2∣.
例如:点P1(1,2),点P2(3,5),因为∣1-3∣<∣2-5∣,所以点P1与点P2的“非常距离”为
∣2-5∣=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x
轴的直线P2Q的交点)。
(1)已知点,B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最
小值及相应的点E和点C的坐标。
23.(2013年北京市7分)在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时
针旋转60°得到线段BD。
(1)如图1,直接写出∠ABD的大小(用含的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。
24.(2013年北京市8分)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点
A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D(,),E(0,-2),F(,0)
(1) 当⊙O的半径为1时,
(2) ①在点D,E,F中,⊙O的关联点是 ▲ ;
②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。
25.(2014年北京市7分)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.
(1)依题意补全图1;
(2)若,求∠ADF的度数;
(3)如图2,若,用等式表示线段AB,FE,FD之间的数量关系,并证明.
第 22 页 共 22 页
以上资料来源于网络,如有异议,请添加QQ:905622058,将有关问题进行反馈!衷心感谢!