分享
2022高考数学真题分类汇编10立体几何.docx
下载文档

ID:3257544

大小:2.21MB

页数:37页

格式:DOCX

时间:2024-02-08

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2022高考数学真题分类汇编10 立体几何 2022 高考 数学 分类 汇编 10
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群483122854 联系QQ805889734加入百度网盘群3500G一线老师必备资料一键转存,自动更新,一劳永逸 2022高考数学真题分类汇编 十、立体几何 一、单选题 1.(2022·全国甲(文、理)T4) 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( ) A. 8 B. 12 C. 16 D. 20 【答案】B 【解析】 【分析】由三视图还原几何体,再由棱柱的体积公式即可得解. 【详解】由三视图还原几何体,如图, 则该直四棱柱的体积. 故选:B. 2.(2022·全国甲(文)T9) 在长方体中,已知与平面和平面所成的角均为,则( ) A. B. AB与平面所成的角为 C. D. 与平面所成的角为 【答案】D 【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】如图所示: 不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得. 对于A,,,,A错误; 对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误; 对于C,,,,C错误; 对于D,与平面所成角为,,而,所以.D正确. 故选:D. 3.(2022·全国甲(文)T10) 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( ) A. B. C. D. 【答案】C 【解析】 【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为, 则, 所以, 又, 则, 所以, 所以甲圆锥的高, 乙圆锥的高, 所以. 故选:C. 4.(2022·全国甲(理)T7) 在长方体中,已知与平面和平面所成的角均为,则( ) A. B. AB与平面所成的角为 C. D. 与平面所成的角为 【答案】D 【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】如图所示: 不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得. 对于A,,,,A错误; 对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误; 对于C,,,,C错误; 对于D,与平面所成角为,,而,所以.D正确. 故选:D. 5.(2022·全国甲(理)T8) 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是的AB中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( ) A. B. C. D. 【答案】B 【解析】 【分析】连接,分别求出,再根据题中公式即可得出答案. 【详解】解:如图,连接, 因为是的中点, 所以, 又,所以三点共线, 即, 又, 所以, 则,故, 所以. 故选:B. 6.(2022·全国甲(理)T9) 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( ) A. B. C. D. 【答案】C 【解析】 【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为, 则, 所以, 又, 则, 所以, 所以甲圆锥的高, 乙圆锥的高, 所以. 故选:C. 7.(2022·全国乙(文)T9) 在正方体中,E,F分别为的中点,则( ) A. 平面平面 B. 平面平面 C. 平面平面 D. 平面平面 【答案】A 【解析】 【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体中, 且平面, 又平面,所以, 因为分别为的中点, 所以,所以, 又, 所以平面, 又平面, 所以平面平面,故A正确; 如图,以点为原点,建立空间直角坐标系,设, 则, , 则,, 设平面的法向量为, 则有,可取, 同理可得平面的法向量为, 平面的法向量为, 平面的法向量为, 则, 所以平面与平面不垂直,故B错误; 因为与不平行, 所以平面与平面不平行,故C错误; 因为与不平行, 所以平面与平面不平行,故D错误, 故选:A. 8.(2022·全国乙(文)T12) 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( ) A. B. C. D. 【答案】C 【解析】 【分析】先证明当四棱锥顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值. 【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r, 设四边形ABCD对角线夹角为, 则 (当且仅当四边形ABCD为正方形时等号成立) 即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 又 则 当且仅当即时等号成立, 故选:C 9.(2022·全国乙(理)T7) 在正方体中,E,F分别为的中点,则( ) A. 平面平面 B. 平面平面 C. 平面平面 D. 平面平面 【答案】A 【解析】 【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体中, 且平面, 又平面,所以, 因为分别为的中点, 所以,所以, 又, 所以平面, 又平面, 所以平面平面,故A正确; 如图,以点原点,建立空间直角坐标系,设, 则, , 则,, 设平面的法向量为, 则有,可取, 同理可得平面的法向量为, 平面的法向量为, 平面的法向量为, 则, 所以平面与平面不垂直,故B错误; 因为与不平行, 所以平面与平面不平行,故C错误; 因为与不平行, 所以平面与平面不平行,故D错误, 故选:A. 10.(2022·全国乙(理)T9) 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( ) A. B. C. D. 【答案】C 【解析】 【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值. 【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r, 设四边形ABCD对角线夹角为, 则 (当且仅当四边形ABCD为正方形时等号成立) 即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 又 则 当且仅当即时等号成立, 故选:C 11.(2022·新高考Ⅰ卷T4)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( ) A. B. C. D. 【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积. 棱台上底面积,下底面积, ∴ . 故选:C. 12.(2022·新高考Ⅰ卷T8) 已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( ) A. B. C. D. 【答案】C 【解析】 【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为,所以球的半径, 设正四棱锥的底面边长为,高为, 则,, 所以, 所以正四棱锥的体积, 所以, 当时,,当时,, 所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,, 所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是. 故选:C. 13.(2022·新高考Ⅰ卷T9) 已知正方体,则( ) A. 直线与所成的角为 B. 直线与所成的角为 C. 直线与平面所成的角为 D. 直线与平面ABCD所成的角为 【答案】ABD 【解析】 【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角, 因为四边形为正方形,则,故直线与所成的角为,A正确; 连接,因为平面,平面,则, 因为,,所以平面, 又平面,所以,故B正确; 连接,设,连接, 因为平面,平面,则, 因为,,所以平面, 所以为直线与平面所成的角, 设正方体棱长为,则,,, 所以,直线与平面所成的角为,故C错误; 因为平面,所以为直线与平面所成的角,易得,故D正确. 故选:ABD 14.(2022·新高考Ⅱ卷T7)正三棱台高为1,上下底边长分别为和,所有顶点在同一球面上,则球的表面积是( ) A. B. C. D. 【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为. 故选:A. 15.(2022·新高考Ⅱ卷T11) 如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( ) A. B. C. D. 【答案】CD 【解析】 【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可. 【详解】 设,因为平面,,则, ,连接交于点,连接,易得, 又平面,平面,则,又,平面,则平面, 又,过作于,易得四边形为矩形,则, 则,, ,则,,, 则,则,,,故A、B错误;C、D正确. 故选:CD. 16.(2022·北京卷T9) 已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为( ) A. B. C. D. 【答案】B 【解析】 【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积. 【详解】 设顶点在底面上的投影为,连接,则为三角形的中心, 且,故. 因为,故, 故的轨迹为以为圆心,1为半径的圆, 而三角形内切圆的圆心为,半径为, 故的轨迹圆在三角形内部,故其面积为 故选:B 17. (2022·浙江卷T8)如图,已知正三棱柱,E,F分别是棱上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则( ) A. B. C. D. 【答案】A 【解析】 【分析】先用几何法表示出,再根据边长关系即可比较大小. 【详解】如图所示,过点作于,过作于,连接, 则,,, ,,, 所以, 故选:A. 三、解答题 1.(2022·全国甲(文)T19) 小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直. (1)证明:平面; (2)求该包装盒的容积(不计包装盒材料的厚度). 【答案】(1)证明见解析; (2). 【解析】 【分析】(1)分别取的中点,连接,由平面知识可知,,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出; (2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出. 【小问1详解】 如图所示:, 分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面. 【小问2详解】 如图所示:, 分别取中点,由(1)知,且,同理有,,,,由平面知识可知,,,,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍. 因为,,点到平面的距离即为点到直线的距离,,所以该几何体的体积. 2.(2022·全国甲(理)T18) 在四棱锥中,底面. (1)证明:; (2)求PD与平面所成的角的正弦值. 【答案】(1)证明见解析; (2). 【解析】 【分析】(1)作于,于,利用勾股定理证明,根据线面垂直性质可得,从而可得平面,再根据线面垂直的性质即可得证; (2)以点为原点建立空间直角坐标系,利用向量法即可得出答案. 【小问1详解】 证明:在四边形中,作于,于, 因为, 所以四边形为等腰梯形, 所以, 故,, 所以, 所以, 因为平面,平面, 所以, 又, 所以平面, 又因平面, 所以; 【小问2详解】 解:如图,以点原点建立空间直角坐标系, , 则, 则, 设平面的法向量, 则有,可取, 则, 所以与平面所成角的正弦值为. 3.(2022·全国乙(文)T18) 如图,四面体中,,E为AC的中点. (1)证明:平面平面ACD; (2)设,点F在BD上,当的面积最小时,求三棱锥的体积. 【答案】(1)证明详见解析 (2) 【解析】 【分析】(1)通过证明平面来证得平面平面. (2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积. 【小问1详解】 由于,是的中点,所以. 由于,所以, 所以,故, 由于,平面, 所以平面, 由于平面,所以平面平面. 【小问2详解】 依题意,,三角形是等边三角形, 所以, 由于,所以三角形是等腰直角三角形,所以. ,所以, 由于,平面,所以平面. 由于,所以, 由于,所以, 所以,所以, 由于,所以当最短时,三角形的面积最小值. 过作,垂足为, 在中,,解得, 所以, 所以 过作,垂足为,则,所以平面,且, 所以, 所以. 4.(2022·全国乙(理)T18) 如图,四面体中,,E为的中点. (1)证明:平面平面; (2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值. 【答案】(1)证明过程见解析 (2)与平面所成的角的正弦值为 【解析】 【分析】(1)根据已知关系证明,得到,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明; (2)根据勾股定理逆用得到,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. 【小问1详解】 因为,E为的中点,所以; 在和中,因为, 所以,所以,又因为E为的中点,所以; 又因为平面,,所以平面, 因为平面,所以平面平面. 【小问2详解】 连接,由(1)知,平面,因为平面, 所以,所以, 当时,最小,即的面积最小. 因为,所以, 又因为,所以是等边三角形, 因为E为的中点,所以,, 因为,所以, 在中,,所以. 以为坐标原点建立如图所示的空间直角坐标系, 则,所以, 设平面的一个法向量为, 则,取,则, 又因为,所以, 所以, 设与平面所成的角的正弦值为, 所以, 所以与平面所成的角的正弦值为. 5.(2022·新高考Ⅰ卷T19) 如图,直三棱柱的体积为4,的面积为. (1)求A到平面的距离; (2)设D为的中点,,平面平面,求二面角的正弦值. 【答案】(1) (2) 【解析】 【分析】(1)由等体积法运算即可得解; (2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解. 【小问1详解】 在直三棱柱中,设点A到平面的距离为h, 则, 解得, 所以点A到平面的距离为; 【小问2详解】 取的中点E,连接AE,如图,因为,所以, 又平面平面,平面平面, 且平面,所以平面, 在直三棱柱中,平面, 由平面,平面可得,, 又平面且相交,所以平面, 所以两两垂直,以B为原点,建立空间直角坐标系,如图, 由(1)得,所以,,所以, 则,所以的中点, 则,, 设平面的一个法向量,则, 可取, 设平面的一个法向量,则, 可取, 则, 所以二面角的正弦值为. 6.(2022·新高考Ⅱ卷T20) 如图,是三棱锥的高,,,E是的中点. (1)求证:平面; (2)若,,,求二面角的正弦值. 【答案】(1)证明见解析 (2) 【解析】 【分析】(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证; (2)过点作,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; 小问1详解】 证明:连接并延长交于点,连接、, 因为是三棱锥的高,所以平面,平面, 所以、, 又,所以,即,所以, 又,即,所以,, 所以 所以,即,所以为的中点,又为的中点,所以, 又平面,平面, 所以平面 【小问2详解】 解:过点作,如图建立平面直角坐标系, 因为,,所以, 又,所以,则,, 所以,所以,,,,所以, 则,,, 设平面法向量为,则,令,则,,所以; 设平面的法向量为,则,令,则,,所以; 所以 设二面角为,由图可知二面角为钝二面角, 所以,所以 故二面角的正弦值为; 7.(2022·北京卷T17)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点. (1)求证:平面; (2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值. 条件①:; 条件②:. 注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】(1)见解析 (2)见解析 【解析】 【分析】(1)取的中点为,连接,可证平面平面,从而可证平面. (2)选①②均可证明平面,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值. 【小问1详解】 取的中点为,连接, 由三棱柱可得四边形为平行四边形, 而,则, 而平面,平面,故平面, 而,则,同理可得平面, 而平面, 故平面平面,而平面,故平面, 【小问2详解】 因为侧面为正方形,故, 而平面,平面平面, 平面平面,故平面, 因为,故平面, 因为平面,故, 若选①,则,而,, 故平面,而平面,故, 所以,而,,故平面, 故可建立如所示的空间直角坐标系,则, 故, 设平面的法向量为, 则,从而,取,则, 设直线与平面所成的角为,则 . 若选②,因为,故平面,而平面, 故,而,故, 而,,故, 所以,故, 而,,故平面, 故可建立如所示的空间直角坐标系,则, 故, 设平面的法向量为, 则,从而,取,则, 设直线与平面所成的角为,则 . 8.(2022·浙江卷T19) 如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点. (1)证明:; (2)求直线与平面所成角的正弦值. 【答案】(1)证明见解析; (2). 【解析】 【分析】(1)过点、分别做直线、的垂线、并分别交于点、,由平面知识易得,再根据二面角的定义可知,,由此可知,,,从而可证得平面,即得; (2)由(1)可知平面,过点做平行线,所以可以以点为原点,,、所在直线分别为轴、轴、轴建立空间直角坐标系,求出平面的一个法向量,以及,即可利用线面角的向量公式解出. 【小问1详解】 过点、分别做直线、的垂线、并分别交于点交于点、. ∵四边形和都是直角梯形,,,由平面几何知识易知,,则四边形和四边形是矩形,∴在Rt和Rt,, ∵,且, ∴平面是二面角的平面角,则, ∴是正三角形,由平面,得平面平面, ∵是的中点,,又平面,平面,可得,而,∴平面,而平面. 【小问2详解】 因为平面,过点做平行线,所以以点为原点, ,、所在直线分别为轴、轴、轴建立空间直角坐标系, 设,则, 设平面的法向量为 由,得,取, 设直线与平面所成角为, ∴.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开