温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2022高考数学真题分类汇编03
不等式
2022
高考
数学
分类
汇编
03
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群483122854
联系QQ805889734加入百度网盘群3500G一线老师必备资料一键转存,自动更新,一劳永逸
2022高考数学真题分类汇编
三、不等式
一、选择题
1.(2022·全国甲(文)T12) 已知,则( )
A. B. C. D.
【答案】A
【解析】
【分析】根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.
【详解】由可得,而,所以,即,所以.
又,所以,即,
所以.综上,.
故选:A.
2.(2022·全国甲(理)T12) 已知,则( )
A. B. C. D.
【答案】A
【解析】
【分析】由结合三角函数的性质可得;构造函数,利用导数可得,即可得解.
【详解】因为,因为当
所以,即,所以;
设,
,所以在单调递增,
则,所以,
所以,所以,
故选:A
3.(2022·新高考Ⅰ卷T7)设,则( )
A. B. C. D.
【答案】C
【解析】
【分析】构造函数, 导数判断其单调性,由此确定大小.
【详解】设,因为,
当时,,当时,
所以函数在单调递减,在上单调递增,
所以,所以,故,即,
所以,所以,故,所以,
故,
设,则,
令,,
当时,,函数单调递减,
当时,,函数单调递增,
又,
所以当时,,
所以当时,,函数单调递增,
所以,即,所以
故选:C.
4.(2022·新高考Ⅱ卷T12) 对任意x,y,,则( )
A. B.
C. D.
【答案】BC
【解析】
【分析】根据基本不等式或者取特值即可判断各选项的真假.
【详解】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;
由可变形为,解得,当且仅当时取等号,所以C正确;
因为变形可得,设,所以,因此
,所以当时满足等式,但是不成立,所以D错误.
故选:BC.