学科网(北京)股份有限公司成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群483122854联系QQ805889734加入百度网盘群3500G一线老师必备资料一键转存,自动更新,一劳永逸2022高考数学真题分类汇编五、函数与导数一、选择题1.(2022·全国甲(文T7)(理T5))函数在区间的图象大致为()A.B.C.D.【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,学科网(北京)股份有限公司则,所以为奇函数,排除BD;又当时,,所以,排除C.故选:A.2.(2022·全国甲(文T8)(理T6)).当时,函数取得最大值,则()A.B.C.D.1【答案】B【解析】【分析】根据题意可知,即可解得,再根据即可解出.【详解】因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.故选:B.3.(2022·全国乙(文T8)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是()学科网(北京)股份有限公司A.B.C.D.【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,,所以,故排除C;设,则,故排除D.故选:A.4.(2022·全国乙(理)T12)已知函数的定义域均为R,且.若的图像关于直线对称,,则()学科网(北京)股份有限公司A.B.C.D.【答案】D【解析】【分析】根据对称性和已知条件得到,从而得到,,然后根据条件得到的值,再由题意得到从而得到的值即可求解.【详解】因为的图像关于直线对称,所以,因为,所以,即,因为,所以,代入得,即,所以,.因为,所以,即,所以.因为,所以,又因为,联立得,,所以的图像关于点中心对称,因为函数的定义域为R,所以学科网(北京)股份有限公司因为,所以.所以.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.5.(2022·新高考Ⅰ卷T10)已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,,令得或,令得,所以在上单调递减,在,上单调递增,所以是极值点,故A正确;因,,,学科网(北京)股份有限公司所以,函数在上有一个零点,当时,,即函数在上无零...