温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
年级
数学
下册
第三
单元
剪纸
中的
分数
加减法
信息
展板
布置
教案
青岛
版六三制
信息窗4:展板布置
教学内容:
义务教育课程标准实验教科书青岛版小学数学五年级上册41~47页。
教材分析:
该信息窗呈现的是一幅长方形剪纸作品及规格,同时说明所布置展板的要求,拟引导学生研究布置展板的方法,开展对公倍数和最小公倍数知识的学习。
教学目标:
1、结合解决实际问题,通过具体操作和交流活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会找10以内两个数的公倍数和最小公倍数的方法,能进行分数和小数的互化,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、在探索公倍数、最小公倍数等知识的过程中,积累观察、猜测、归纳等数学活动经验,发展初步的推理能力,会用所学新知解决简单的现实问题,并能在解决问题的过程中,进行有条理、有根据的思考。
4、在参与学习活动的过程中,体验学习和探索的乐趣,增强对数学学习的信心,并进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
第一课时 公倍数和最小公倍数(总第17课时)
教学内容:教科书第41~43页的内容,自主练习的第1~3题。
教学准备:长3厘米、宽2厘米的长方形纸片若干张。
教学过程:
一、经历操作活动,认识公倍数。(同桌一起动手操作)
1、摆纸片活动。(课前一分钟)
(1)复习环节。(出示:在黑板上贴长3厘米、宽2厘米的长方形纸片)
这样长3厘米、宽2厘米的长方形,不重叠、不间隔横着(手势辅助)排下去,可以表示怎样的长度?还能说吗?
提问:你发现了什么?
若学生答不到点子上,则引导:这些长度与3厘米有什么关系呢?
(预设学生的回答是:这些数都是长3厘米的倍数,3的倍数个数是无限的,所以能不断排下去)
设问:那竖着排呢?你又有什么发现?
2、情境导入,探究新知。
(1)谈话导入。
教师:在刚刚结束的寒假中,小明积极参加了社区的公益
活动,为了增加春节期间的节日氛围,社却要用右图所示
的这种规格的剪纸作品布置成大小不同的正方形展板,来
装饰社区,你能不能帮小明想一想用多少个“春”字作品
可以摆成正方形展板?这些展板的边长分别是多少分米?
谈话:请同学们拿出学具盒中的这些长3厘米、宽2厘米的长方形纸片,代替“春”字,同桌合作,用你手中的这些纸片摆摆看。
(2)学生操作,老师巡视,适时指导,对于找到一种摆法的学生,应即使提示他们思考是否还有其他不同的摆法。挑选学生作品留待展示。
(3)情况反馈:指名学生到实物展台上摆给全体同学看。
学生拼出的结果可能有许多种:
①用6个小长方形,摆出边长是6厘米的正方形。
教师适时提问:用长3厘米、宽2厘米的长方形纸片摆成边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(6÷3=2(次),6÷2=3(次))
②用24个小长方形,摆出边长是12厘米的正方形。
再提问:用长3厘米、宽2厘米的长方形纸片摆成边长12厘米的正方形,每条边各铺了几次?怎样用算式表示?(12÷3=4(次), 12÷2=6(次))
(4)总结规律。
提问:根据刚才摆正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?(略停顿,给学生思考的时间)把你的想法和同桌交流一下,比一比谁想到的多?
交流:(能正好铺满边长12厘米、18厘米、24厘米……的正方形)板书
提问:他举得例子对吗?为什么能摆成正方形?通过刚才的活动,你发现摆成的正方形的边长与小长方形的长和宽有什么关系?
边长既是2的倍数,又是3的倍数。 (课件出示下图)
(明确:只要正方形的边长既是2的倍数,又是3的倍数,就能用这样的小长方形纸片摆成。)
3、揭示概念
讲述:像6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数,可以用下图表示(用课件出示)。
(板书:公倍数)这里的省略号又意味着什么?
强调:因为一个数的倍数个数是无限的,所以两个数的公倍数的个数也是无限的,同样用省略号来表示。
提问:你能用自己的话说说什么是公倍数?
(预设:两个数公有的倍数就是这两个数的公倍数;既是一个数的倍数,又是另一个数的倍数的数,就是这两个数的公倍数。则:不错,公倍数是至少对于两个数而言的。)
教师:2和3的公倍数的个数是无限的,没有最大的,其中最小的的是6,它是2和3的最小公倍数。
同时明确,正方形展板的边长可以是6分米、12分米、18分米……
二、自主探索求公倍数和最小公倍数的方法。
1、用列举的方法求两个数的最小公倍数。
出示题目:你能找出12和18的最小的公倍数吗?
提问:根据你对公倍数的理解,你准备怎样解决这个问题?(静思一分钟)
学生交流,独立尝试。(完成在练习纸上),最后交流反馈。
一一列举出12和18的倍数,再找公倍数。
12的倍数有:12、24、36、48、60、72……
18的倍数有:18、36、54、72、90、108……(板书:注意省略号)
12和18的公倍数有:36、72……(引导学生逐个检查并打圈。)
12和18的最小公倍数是:36。
反馈情况。
谈话:除了将2个数的倍数分别一一列举,再找出它们的公倍数和最小公倍数。
质疑:能不能更快捷一些,只列举出1个数的倍数,再从中找出它们的公倍数呢?学生尝试(练习纸)[学生板演]
谈话:从9的倍数中找6的倍数,还是从6的倍数中找9的倍数,都只要从一个数的倍数中找出另一个数的倍数,就是它们的公倍数,你更喜欢哪一种?为什么?
2、用短除法求两个数的最小公倍数。
教师:刚才我们用一个一个地找一个数的倍数的方法能找出两个数的公倍数和最小公倍数,但这样找公倍数有一个什么样的问题呢?
学生:太麻烦了。
教师:所以我们要找到一个比较简便的求最小公倍数的方法,求最大公约数比较简便的方法是什么?
学生:用分解质因数的方法。
教师:我们来探究一下能不能用分解质因数的方法求几个数的最小公倍数,以求12和18的最小公倍数为例,请同学们先把12和18分解质因数。
学生完成后,抽一个学生的作业在视频展示台上展示出来,集体订正,教师板书其结果:
12=2×2×3
18=2×3×3
教师:作为12和18的最小公倍数,你们认为应该是哪些质因数的乘积呢?
学生探究,首先看全部质因数乘起来是不是12和18的公倍数,如2×2×3×2×3×3=216,让学生意识到这个数是12和18的公倍数,但不是最小公倍数。
教师:那么怎样乘起来才是它们的最小公倍数呢?
要求学生讨论出相乘时,相同的质因数只取一个就行了。
教师:试一试。
学生写出:2×3×2×3=36
教师:这个数是12和18的最小公倍数吗?与前面使用列举法得到的结果相同吗?
教师:谁来说一说怎样用分解质因数的方法求几个数的最小公倍数。
学生:把这几个数分别分解质因数,再把它们的质因数相乘,但公有的质因数各取一个。
教师:在实际操作时我们用不着一个一个地分解质因数,用短除式可以作一次性的分解。
用课件显示把两次分解合到一个短除式的过程,学生再试着写短除式,让学生明白要用这两个数的公有的质因数去除,除到两个数的商是公因数只有1为止。
教师:在这个短除式中,哪些是这两个数公有的质因数,哪些是两个数各自独有的质因数呢?
引导学生说出在短除式中,作为除数的数是两个数公有的质因数,作为最后的商的数是两个数各自独有的质因数。
教师:所以,用短除式找两个数的最小公倍数时,最后应该把哪些数乘起来呢?
学生:把除数和商乘起来.教师板书:2×3×2×3=36。
请学生用上面的方法求出6和15的最小公倍数,做完后集体订正。
教师:同学们能总结用短除式求两个数的最小公倍数的方法吗?
求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
三、巩固练习。
1、做“自主练习”第1题:找出下面每组数的最小公倍数。
6和15 16和12 15和20 21和28
放手让学生独立完成,通过交流和对比让学生体会用短除法求最小公倍数的优越性。
2、做“自主练习”第2题:数学游戏。
生1:学号是4的倍数的同学举右手。
生2:学号是6的倍数的同学举左手。
你发现了什么?
引导学生发现:举两只手的同学的学号就是4和6的公倍数。
3、小强每步走2个桩,爸爸每步走3个桩。你能在父子两人都踩到的木桩上涂上红色吗?
提问:涂色的方格里写的数与2和3有什么关系?
四、课堂小结:
师生共同小结以下内容:
1、这节课学习了什么内容?
2、什么叫公倍数?什么叫最小公倍数?怎样用短除式求两个数的最小公倍数?
3、通过这节课的学习,你掌握了哪些学习方法?4
4、你还知道些什么?