学海在线资源中心shop174248478.taobao.com《圆锥曲线与方程》全章复习与巩固编稿:李霞审稿:张林娟【学习目标】(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质。(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)掌握直线与圆锥曲线的位置关系及综合应用.【知识网络】【要点梳理】要点一:圆锥曲线的标准方程和几何性质1.椭圆:(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若为椭圆上任意一点,则有。椭圆的标准方程为:()(焦点在x轴上)或y2a2+x2b2=1()(焦点在y轴上)。要点诠释:①椭圆标准方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。直线与圆锥曲线的位置关系圆锥曲线曲线与方程圆锥曲线与方程椭圆的定义及标准方程椭圆椭圆的几何性质双曲线的定义及标准方程双曲线双曲线的几何性质抛物线的定义及标准方程抛物线抛物线的几何性质学海在线资源中心shop174248478.taobao.com例如椭圆(,,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。(2)椭圆的性质①范围:由标准方程知,,说明椭圆位于直线,所围成的矩形里;②对称性:椭圆关于轴、轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:,,,是椭圆的四个顶点。同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。 ,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。当且仅当时,,两焦点重合,图形变为圆,方程为。2.双曲线(1)双曲线的概念平面内与两个定点的距离的差的绝对值等于常数(小于且不等于零)的点的轨迹叫做双曲线.要点诠释:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双学海在线资源中心shop174248478.taobao.com曲线的焦点,叫做焦距。(2)双曲线的性质①范围:从标准方程x2a2−y2b2=1,看出曲线在坐标系中的范围:双曲线在两条直线x=±a的外侧。即x2≥a2,|x|≥a即双曲线在两条直线x=±a的外侧。②对...