学海在线资源中心shop174248478.taobao.com《导数及其应用》全章复习与巩固编稿:李霞审稿:张林娟【学习目标】1.会利用导数解决曲线的切线的问题.2.会利用导数解决函数的单调性等有关问题.3.会利用导数解决函数的极值、最值等有关问题.4.能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点:①切点在切线上;②切点在曲线上;③切线斜率等于曲线在切点处的导数值.要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数在区间(a,b)内可导,(1)如果恒有,则函数在(a,b)内为增函数;(2)如果恒有,则函数在(a,b)内为减函数;(3)如果恒有,则函数在(a,b)内为常数函数.要点诠释:(1)若函数在区间(a,b)内单调递增,则,若函数在(a,b)内单调递减,则.(2)或恒成立,求参数值的范围的方法:①分离参数法:或.②若不能隔离参数,就是求含参函数的最小值,使.学海在线资源中心shop174248478.taobao.com(或是求含参函数的最大值,使)要点三:函数极值、最值的问题函数极值的问题(1)确定函数的定义域;(2)求导数;(3)求方程的根;(4)检查在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)要点诠释:①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点;若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值.函数最值的问题若函数在闭区间有定义,在开区间内有导数,则求函数在上的最大值和最小值的步骤如下:(1)求函数在内的导数;(2)求方程在内的根;(3)求在内所有使的的点的函数值和在闭区间端点处的函数值,;(4)比较上面所求的值,其中最大者为函数在闭区间上的最大值,最小者为函数在闭区间上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的建立数学模型学海在线资源中心shop174248478.taobao.com函数值进行比较即可.②若在开区间内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.要点四:优化问题在实际生活中用料最省、利润最大、效率...