期末复习(五)不等式与不等式组考点一一元一次不等式的解法【例1】解不等式-≤1,并把它的解集在数轴上表示出来.【分析】解不等式一般会涉及去括号和去分母,去括号时应注意去括号法则的正确使用,去分母时应注意每一项都要乘最简公分母.【解答】去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,合并同类项得-11x≤11.系数化为1,得x≥-1.这个不等式的解集在数轴上表示为:【方法归纳】直接按一元一次不等式的解法步骤先解出其解集,然后将解集在数轴上表示出来.同时,要注意在数轴上表示不等式的解集时区分实心点与空心圆圈.1.在数轴上表示不等式x+5≥1的解集,正确的是()2.解不等式1-≥,并把它的解集在数轴上表示出来.考点二一元一次不等式组的解法【例2】求不等式组:的整数解.【分析】先分别解不等式组里的每一个不等式,再取各解集的公共部分,然后取整数解.【解答】解不等式①,得x<5.解不等式②,得x≥-2.原不等式组的解集为-2≤x<5.因此,原不等式组的整数解为:-2,-1,0,1,2,3,4.【方法归纳】不等式(组)的特殊解在某些范围内是有限的,如整数解、非负整数解等,要求这些特殊解,要先确定不等式(组)的解集.3.解不等式组并写出它的所有的整数解.考点三由不等式(组)解的情况,求不等式(组)中字母的取值范围【例3】(1)若不等式组无解,则m的取值范围是__________.(2)已知关于x的不等式组的整数解共有6个,则a的取值范围是__________.【分析】(1)由不等式组的解集,来确定字母m的取值范围.因为原不等式组无解,所以可得到:m+1≤2m-1,解这个关于m的不等式即可;(2)由已知结论探求字母的取值范围,要先求出不等式组的解集,再来确定字母a的取值范围.不等式组的解集为a<x<,则6个整数解为:1,0,-1,-2,-3,-4,故-5≤a<-4.【解答】(1)m≥2;(2)-5≤a<-4.【方法归纳】解决这类问题的思路一般是逆用不等式(组)的解集,借助不等式(组)解集的特点,构造出不等式(组)来求出字母的取值范围.4.若关于x的不等式组有解,则实数a的取值范围是__________.5.已知关于x的不等式组只有四个整数解,则实数a的取值范围是__________.考点四不等式的实际应用【例4】小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料?【分析】先设小宏买了x瓶甲饮料,则买了(10-x)瓶乙饮料,由买甲饮料的总费用+买乙饮料的总费用小于或等于50元列不等式求解,x取最大整数即满足题意.【解答】设小宏买了x瓶甲饮料,...