第五单元四边形第19讲多边形与平行四边形一、知识清单梳理知识点一:多边形[来源:学#科#网]关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.[来源:学科网ZXXK](2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为.多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.[来源:Zxxk.Com]例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n-2)·180°(2)外角和:任意多边形的外角和为360°.[来源:学,科,网]3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为,每一个外角为360°/n.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.例:如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.5.平行四边形的性质(1)边:两组对边分别平行且相等.即AB∥CD且AB=CD,BC∥AD且AD=BC.(2)角:对角相等,邻角互补.即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.(3)对角线:互相平分.即OA=OC,OB=OD(4)对称性:中心对称但不是轴对称.6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半....