分享
八年级数学下册知识点测试:期末综合检测(含详解)_20200531233228.doc
下载文档

ID:3241554

大小:2.02MB

页数:13页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
八年 级数 下册 知识点 测试 期末 综合 检测 详解 _20200531233228
期末综合检测 (第十六至第二十章) 一、选择题(每小题3分,共30分) 1.(2013·鞍山中考)要使式子有意义,则x的取值范围是(  ) A.x>0 B.x≥-2 C.x≥2 D.x≤2 2.矩形具有而菱形不具有的性质是(  ) A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等 3.下列计算正确的是(  ) A.×=4 B.+= C.÷=2 D.=-15 4.(2013·陕西中考)根据表中一次函数的自变量x与函数y的对应值,可得p的值为(  ) x[来源:] -2 0 1 y 3[来源:] p 0 A.1   B.-1  C.3   D.-3 5.(2013·盐城中考)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是(  ) 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 2 A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D.2200元、2300元 6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(  ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 7.(2013·巴中中考)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是(  ) A.24     B.16 C.4     D.2 8.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为(  ) A. B.2 C.3 D.4 9.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是(  ) 10.(2013·黔西南州中考)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为(  ) A.x<     B.x<3 C.x>     D.x>3 二、填空题(每小题3分,共24分) 11.计算:-=    . 12.(2013·恩施州中考)函数y=的自变量x的取值范围是    . 13.已知a,b,c是△ABC的三边长,且满足关系式+|a-b|=0,则△ABC的形状为    . 14.(2013·十堰中考)某次能力测试中,10人的成绩统计如下表,则这10人成绩的平均数为    . 分数 5 4 3 2 1 人数 3 1 2 2 2 15.(2013·资阳中考)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取值范围为    . 16.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件    ,使四边形AECF是平行四边形(只填一个即可). 17.(2013·泉州中考)如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC∶BD=1∶2,则AO∶BO=    ,菱形ABCD的面积S=    . 18.(2013·上海中考)李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是    L. 三、解答题(共66分) 19.(10分)计算:(1)9+7-5+2. (2)(2-1)(+1)-(1-2)2. 20.(6分)(2013·荆门中考)化简求值:÷·,其中a=-2. 21.(6分)(2013·武汉中考)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集. 22.(8分)(2013·宜昌中考)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF. (1)请你判断所画四边形的形状,并说明理由. (2)连接EF,若AE=8cm,∠A=60°,求线段EF的长. 23.(8分)(2013·昭通中考)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN. (1)求证:四边形AMDN是平行四边形. (2)当AM为何值时,四边形AMDN是矩形?请说明理由. 24.(8分)(2013·鄂州中考)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A,B两点,测量数据如图,其中矩形CDEF表示楼体, AB=150m,CD=10m,∠A=30°,∠B=45°(A,C,D,B四点在同一直线上),问: (1)楼高多少米? (2)若每层楼按3m计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24) 25.(10分)(2013·株洲中考)某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴). (1)该植物从观察时起,多少天以后停止长高? (2)求直线AC的解析式,并求该植物最高长多少厘米? 26.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲、乙射击成绩统计表 平均数 中位数[来源:] 方差[来源:] 命中10环的次数 甲 7 0 乙 1 甲、乙射击成绩折线图 (1)请补全上述图表(请直接在表中填空和补全折线图). (2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由. (3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么? 答案解析 1.【解析】选D.根据题意得2-x≥0,解得x≤2. 2.【解析】选B.矩形与菱形的两组对边都分别平行,故选项A不符合题意;矩形的对角线相等,菱形的对角线不一定相等,故选项B正确;矩形与菱形的对角线都互相平分,故选项C不符合题意;矩形与菱形的两组对角都分别相等,故选项D不符合题意. 3.【解析】选C.×==2,与不能合并,÷== =2,==15,因此只有选项C正确. 4.【解析】选A.一次函数的解析式为y=kx+b(k≠0), ∵x=-2时y=3;x=1时y=0, ∴解得 ∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1. 5.【解析】选A.这10个数据中出现次数最多的数据是2400,一共出现了4次,所以众数是2400;这10个数据按从小到大的顺序排列,位于第5个的是2400,第6个的也是2400,故中位数是=2400. 6.【解析】选D.由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故选项A不符合题意;由“AB=DC,AD=BC”可知,四边形ABCD的两组对边分别相等,则该四边形是平行四边形.故选项B不符合题意;由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故选项C不符合题意;由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故选项D符合题意. 7.【解析】选C.∵四边形ABCD是菱形,AC=6,BD=4, AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD, ∴在Rt△AOB中,AB===, ∴菱形的周长为4×AB=4. 8.【解析】选D.∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE= 60°,BC=CD=4, ∴∠BDC=∠CBD=30°,∴∠BDE=90°. ∴BD==4. 9.【解析】选A.∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴一次函数y=x+k的图象经过第一、二、三象限. 10.【解析】选A.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是,∴不等式2x<ax+4的解集为x<. 11.【解析】-=3-=. 答案: 12.【解析】3-x≥0且x+2≠0,解得x≤3且x≠-2. 答案:x≤3且x≠-2 13.【解析】∵+|a-b|=0,∴c2-a2-b2=0,且a-b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形. 答案:等腰直角三角形 14.【解析】×(5×3+4×1+3×2+2×2+1×2)=×(15+4+6+4+2)=×31=3.1.所以这10人成绩的平均数为3.1. 答案:3.1 15.【解析】∵在一次函数y=(2-k)x+1中,y随x的增大而增大,∴2-k>0,∴k<2. 答案:k<2 16.【解析】若添加的条件是AF=CE,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形. 答案:AF=CE(答案不唯一) 17.【解析】∵四边形ABCD是菱形,∴AO=CO,BO=DO, ∴AC=2AO,BD=2BO,∴AO∶BO=1∶2; ∵菱形ABCD的周长为8,∴AB=2, ∵AO∶BO=1∶2,∴AO=2,BO=4, ∴菱形ABCD的面积S=×2×4×4=16. 答案:1∶2 16 18.【解析】设y与x之间的函数关系式为y=kx+b,由函数图象,得解得 则y=-x+3.5.当x=240时,y=-×240+3.5=2(L). 答案:2 19.【解析】(1)9+7-5+2 =9+14-20+ ==. (2)(2-1)(+1)-(1-2)2 =2×+2--1-(1-4+12) =6+2--1-1+4-12 =(2-1+4)-8=5-8. 20.【解析】÷· =··=, 当a=-2时,原式====. 21.【解析】∵直线y=2x+b经过点(3,5), ∴5=2×3+b,解得b=-1, ∵2x+b≥0,∴2x-1≥0,解得x≥. 22.【解析】(1)菱形. 理由:∵根据题意得:AE=AF=ED=DF, ∴四边形AEDF是菱形. (2)如图,连接EF,∵AE=AF,∠A=60°, ∴△EAF是等边三角形,∴EF=AE=8cm. 23.【解析】(1)∵四边形ABCD是菱形,∴ND∥AM, ∴∠NDE=∠MAE,∠DNE=∠AME, ∵点E是AD中点,∴DE=AE, 在△NDE和△MAE中, ∴△NDE≌△MAE(AAS),∴ND=MA, ∴四边形AMDN是平行四边形. (2)AM=1. 理由如下:∵四边形ABCD是菱形,∴AD=AB=2, ∵平行四边形AMDN是矩形, ∴DM⊥AB,即∠DMA=90°, ∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=1. 24.【解析】(1)设楼高为xm,则CF=DE=xm, ∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°, ∴AF=2CF=2xm, 在Rt△ACF中,根据勾股定理得 AC===xm, ∵∠BDE=90°,∠B=45°,∴BD=xm, ∴x+x=150-10,解得 x===70-70(m), ∴楼高70-70(m). (2)x=70-70≈70(1.73-1)=70×0.73=51.1(m)<3×20(m),∴我支持小华的观点,这楼不到20层. 25.【解析】(1)∵CD∥x轴, ∴从第50天开始植物的高度不变. 答:该植物从观察时起,50天以后停止长高. (2)设直线AC的解析式为y=kx+b(k≠0), ∵直线经过点A(0,6),B(30,12), ∴解得 所以,直线AC的解析式为y=x+6(0≤x≤50), 当x=50时,y=×50+6=16. 答:直线AC的解析式为y=x+6(0≤x≤50),该植物最高长16cm. 26.【解析】(1)根据折线统计图得乙的射击成绩为:2,4,6,7,7,8,8,9,9,10,则平均数为=7(环),中位数为7.5环,方差为[(2-7)2+(4-7)2 +(6-7)2+(8-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(10-7)2]=5.4(环2); 甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7,则甲第八次射击的成绩为70-(9+6+7+6+2+7+7+8+9)=9(环),成绩为2,6,6,7,7,7,8,9,9,9,中位数为7(环),方差为[(2-7)2+(6-7)2+(6-7)2+(7-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2 +(9-7)2]=4(环2), 补全如下:甲、乙射击成绩统计表 平均数 中位数 方差 命中10环的次数 甲 7 7 4 0 乙 7 7.5 5.4 1 甲、乙射击成绩折线图 (2)由甲的方差小于乙的方差,得到甲胜出. (3)希望乙胜出,规则为9环与10环的总环数大的胜出,因为乙9环与10环的总数为28,甲9环与10环的总数为27.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开