分享
第六讲 格点与面积.doc
下载文档

ID:3238509

大小:96KB

页数:4页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
第六讲 格点与面积 第六 面积
第六讲 格点与面积 在一张方格图中,每个方格都是一个小正方形,并且大小都相等,我们称为一个面积单位。例如:右图中带阴影的小方格就是一个面积单位。 借助格点图,我们可以很快的比较或计算图形的面积大小。 典型例题 例[1] 下图是用皮筋在钉板上分别围成的正方形、长方形、平行四边形和三角形。它们的面积分别是多少? F C B EF D A · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (1) (2) (3) (4) 分析 题中所给的几个图形都是规则图形,它们的面积可以运用公式求得。而要运用公式,首先要结合点子图计算出有关的边长和高。 解 图(1)是正方形,边长是2,它的面积是2×2=4。 图(2)是长方形,长是4,宽是2,它的面积是4×2=8。 图(3)是平行四边形,从平行四边形的左边移动一个直角三角形到右边,使得平行四边形变成一个长方形,所求的面积是3×2=6。 图(4)是三角形,将三角形扩展成一个长方形。三角形ABC的面积是长方形AFBC面积的一半,三角形ACD的面积是长方形ACDE面积的一半,所以三角形ABD的面积是 (3×2)÷2 =6÷2 =3 例[2] 求下图中各图的面积。 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (1) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2) 分析 我们可以把一个不熟悉的图形,转化为学过的图形来计算。由上图可以看出,图(1)可以分成两块:一块是长方形,另一块是一个三角形。可以利用例[1]所介绍的方法来计算这个三角形的面积。或者将这个图形转化成一个大的长方形,如图(2)。所求的图形面积就等于大长方形面积的一半。 解法一 如图(1),左边长方形的面积是4×3=12,右边三角形的面积是(4×3)÷2=6,整个图形的面积是12+6=18。 解法二 如图(2),大长方形的面积是(8+4)×3=36,所求图形的面积是:36÷2=18。 A F E D C B 例[3] 求下列左图的面积。 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 分析 和例[2]的思考方法一样,先要将所给图形切分成我们已经学会计算面积的图形,这样就可以计算出所给图形的面积。 解 将图形ABCD分成三角形ABD和三角形BCD(上右图),又三角形ABD的面积等于长方形BDFE的面积的一半,所以三角形ABD的面积为(4×3)÷2=6,则图形ABCD的面积为6×2=12。 例[4] 求下图中图形的面积。 A B E F G H K D · · · · · · · · · · · · · · · · · · · · · · · · C · · · · · · · · · · · · · · · · · · 分析 看到这样不规则的图形,我们首先想到的是将它分割成几个我们学习过的基本图形。这样,上图可以分割成一个三角形、一个正方形和一个长方形,可以别计算它们的面积。 解 图中三角形ABK的面积是(2×3)÷2=3,正方形BCHK的面积是2×2=4,长方形DEFG的面积是4×1=4,则所求组合图形的面积是3+4+4=11。 小结 在行间距都相等的格点图中,可以连结若干个小正方形面积单位,利用这些面积单位可以计算出很多图形的面积。如果是一个规则图形,可以运用公式直接计算面积。当所给图形是一个组合图形或不规则的图形时,需要开动脑筋,将它分割成我们熟悉的基本图形。在计算每一个部分面积时,要充分利用格点图的特点,准确地找出所需数据。

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开