温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
直线
位置
关系
基础
巩固
练习
馨雅资源网
两条直线的位置关系(基础)巩固练习
撰稿:孙景艳 审稿: 吴婷婷
【巩固练习】
一、选择题
1.下列说法正确的是 ( )
A.不相交的两条直线是平行线.
B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.
C.同一平面内,不相交的两条射线叫做平行线.
D.同一平面内,没有公共点的两条直线是平行线.
2.点A为直线外一点,点B在直线上,若AB=5厘米,则点A到直线的距离为( )
A. 就是5厘米 B. 大于5厘米 C. 小于5厘米 D.最多为5厘米
3.(湖南邵阳)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是( )
A.20° B.25° C.30° D.70°
4.如图所示,点A到BD的距离是指( )
A.线段AB的长度 B.线段AD的长度 C.线段AE D.线段AE的长度
5.如图所示,∠1和∠2是对顶角的图形共有( )
A.0个 B.1个 C.2个 D.3个
6.如图,AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是( )
A.26° B.64° C.54° D.以上答案都不对
二、填空题
7.在平面上,过直线上一点可以画这条直线的垂线的条数为 条.
8.如图,直线a,b相交,∠1=60°,则∠2=________,∠3=________,∠4=________.
9.如图所示,直线AB,CD,EF相交于点O,CD⊥AB,若∠COE=30°,则∠AOE=_____,∠AOF=______.
10.如图,直线AB与CD的位置关系是________,记作________于点________,此时∠AOD=______=______=______=90°.
11.如图,∠AOB=90°,则AB BO;若OA=3 cm,OB=2 cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连结的所有线段中________最短.
12.如图所示,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是 .
三、解答题
13.如图,三条直线AB、CD和EF相交于一点O,∠COE+∠DOF=50°,∠BOE=70°,求∠AOD和∠BOD.
14.如图,OA⊥OB,OC⊥OD,OE是OD的反向延长线.
(1) ∠AOC等于∠BOD吗?请说明理由;
(2) 若∠BOD=32°,求∠AOE的度数.
15.如图所示,小明家在A处,他要去在同一条路上的小丽家或小红家或小华家或小刚家问作业,则最少要走多少米可以问到作业?
【答案与解析】
一、选择题
1. 【答案】D;
【解析】考查平行线的概念.
2.【答案】D;
【解析】点到直线的距离是该点到直线上所有点的距离中最小者.
3. 【答案】D;
【解析】∠1=40°,∠BOC=140°,∠2=∠BOC=70°.
4. 【答案】D;
5. 【答案】B
【解析】只有(3)中的∠1与∠2是对顶角.
6. 【答案】B;
【解析】∠BOE=90°-∠1=64°,又∠AOF=∠BOE=64°.
二、填空题
7.【答案】1;
【解析】在平面内过一点有且只有一条直线和已知直线垂直,“一点”可以在已知直线上,也可以在已知直线外.
8. 【答案】120°, 60°, 120°;
9. 【答案】60°, 120°;
【解析】∠AOE=90°-∠COE=60°,
∠AOF=∠AOD+∠DOF=90°+∠EOC=90°+30°=120°.
10.【答案】垂直,AB⊥CD, O,∠BOD, ∠BOC,∠AOC;
【解析】垂直的定义.
11.【答案】>, 3, 2, 垂线段;
【解析】点到直线的距离的定义
12.【答案】50°;
【解析】由题意知:∠BOD=∠AOC=∠EOC=50°.
三、解答题
13.【解析】
解:∵ ∠COE=∠DOF(对顶角相等),∠COE+∠DOF=50°(已知),
∴ ∠COE=.∵ ∠BOE=70°,
∴ ∠BOC=∠BOE-∠COE=70°-25°=45°.
∵ ∠AOD=∠BOC(对顶角相等).
∴ ∠AOD=45°.∴ ∠BOD=180°-∠AOD=180°-45°=135°.
14.【解析】
解: (1)∠AOC=∠BOD.
理由:∵ OA⊥OB,OC⊥OD(已知).
∴ ∠AOB=90°,∠COD=90°.
即∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,
∴ ∠AOC=∠BOD(同角的余角相等).
(2)∵ ∠AOB=90°,∠BOD=32°,
∴ ∠AOE=180°-∠AOB-∠BOD=180°-90°-32°=58°.
15.【解析】
解:小明到小红家问作业最近,所以小明至少要走15米.
学魁网