分享
2014-2015学年北京市海淀区九年级(上)期末数学试卷.doc
下载文档

ID:3237884

大小:595.50KB

页数:32页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2014 2015 学年 北京市 海淀区 九年级 期末 数学试卷
馨雅资源网 2014-2015学年北京市海淀区九年级(上)期末数学试卷 一、选择题(共8小题,每小题4分,满分32分) 1.(4分)方程x2﹣3x﹣5=0的根的情况是(  ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定是否有实数根 2.(4分)在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为(  ) A. B. C. D. 3.(4分)若如图是某个几何体的三视图,则这个几何体是(  ) A.长方体 B.正方体 C.圆柱 D.圆锥 4.(4分)小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是(  ) A. B. C. D. 5.(4分)如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为(  ) A.1 B.2 C.4 D.8 6.(4分)已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是(  ) A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<0 7.(4分)如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为(  ) A. B. C.1 D.2 8.(4分)如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的(  ) A.线段EF B.线段DE C.线段CE D.线段BE 二、填空题(共4小题,每小题4分,满分16分) 9.(4分)如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为   cm2.(结果保留π) 10.(4分)在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为   m. 11.(4分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为   . 12.(4分)对于正整数n,定义F(n)=,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1. (1)求:F2(4)=   ,F2015(4)=   ; (2)若F3m(4)=89,则正整数m的最小值是   . 三、解答题(共13小题,满分72分) 13.(5分)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1. 14.(5分)如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE. 15.(5分)已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值. 16.(5分)抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式. 17.(5分)如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC. (1)求反比例函数的解析式; (2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标. 18.(5分)如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E. (1)求线段CD的长; (2)求cos∠ABE的值. 19.(5分)已知关于x的一元二次方程mx2﹣(m+2)x+2=0有两个不相等的实数根x1,x2. (1)求m的取值范围; (2)若x2<0,且>﹣1,求整数m的值. 20.(5分)某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10); 质量档次 1 2 … x … 10 日产量(件) 95 90 … 100﹣5x … 50 单件利润(万元) 6 8 … 2x+4 … 24 为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元. (1)求y关于x的函数关系式; (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值. 21.(5分)如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF. (1)求证:直线PC是⊙O的切线; (2)若AB=,AD=2,求线段PC的长. 22.(5分)阅读下面材料: 小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB; (2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决. 请你帮小明计算:OC=   ;tan∠AOD=   ; 解决问题: 如图3,计算:tan∠AOD=   . 23.(7分)在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n). (1)求代数式mn的值; (2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值; (3)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围. 24.(7分)如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α. (1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系; (2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF. ①若α=90°,依题意补全图3,求线段AF的长; ②请直接写出线段AF的长(用含α的式子表示). 25.(8分)在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点. 定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积. 例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4 (1)若图形W是等腰直角三角形ABO,OA=OB=1. ①如图3,当点A,B在坐标轴上时,它的测度面积S=   ; ②如图4,当AB⊥x轴时,它的测度面积S=   ; (2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为   ; (3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围. 2014-2015学年北京市海淀区九年级(上)期末数学试卷 参考答案与试题解析 一、选择题(共8小题,每小题4分,满分32分) 1.(4分)方程x2﹣3x﹣5=0的根的情况是(  ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定是否有实数根 【分析】求出b2﹣4ac的值,再进行判断即可. 【解答】解:x2﹣3x﹣5=0, △=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0, 所以方程有两个不相等的实数根, 故选:A. 【点评】本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根. 2.(4分)在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为(  ) A. B. C. D. 【分析】直接根据三角函数的定义求解即可. 【解答】解:∵Rt△ABC中,∠C=90°,BC=3,AB=5, ∴sinA==. 故选:A. 【点评】此题考查的是锐角三角函数的定义,比较简单,用到的知识点: 正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c. 3.(4分)若如图是某个几何体的三视图,则这个几何体是(  ) A.长方体 B.正方体 C.圆柱 D.圆锥 【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥. 故选:D. 【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定. 4.(4分)小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是(  ) A. B. C. D. 【分析】由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案. 【解答】解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号, ∴抽到的座位号是偶数的概率是:=. 故选:C. 【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 5.(4分)如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为(  ) A.1 B.2 C.4 D.8 【分析】根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可. 【解答】解:∵C1为OC的中点, ∴OC1=OC, ∵△ABC和△A1B1C1是以点O为位似中心的位似三角形, ∴=,B1C1∥BC, ∴=, ∴=, 即= ∴A1B1=2. 故选:B. 【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行. 6.(4分)已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是(  ) A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<0 【分析】根据反比例函数图象上点的坐标特征得到y1=﹣,y2=﹣,然后利用x1<0<x2即可得到y1与y2的大小. 【解答】解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点, ∴y1=﹣,y2=﹣, ∵x1<0<x2, ∴y2<0<y1. 故选:B. 【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k. 7.(4分)如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为(  ) A. B. C.1 D.2 【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案. 【解答】解:∵OD⊥AC,AC=2, ∴AD=CD=1, ∵OD⊥AC,EF⊥AB, ∴∠ADO=∠OFE=90°, ∵OE∥AC, ∴∠DOE=∠ADO=90°, ∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°, ∴∠DAO=∠EOF, 在△ADO和△OFE中, , ∴△ADO≌△OFE(AAS), ∴OF=AD=1, 故选:C. 【点评】本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦. 8.(4分)如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的(  ) A.线段EF B.线段DE C.线段CE D.线段BE 【分析】作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论. 【解答】解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G. 由题意:当点E与点O重合时,即AE=时,FE有最小值0,与函数图象不符,故A错误; 由垂线段最短可知:当点E与点G重合时,即AE>时,DE有最小值,故B正确; ∵CE=AC﹣AE,CE随着AE的增大而减小,故C错误; 由垂线段最短可知:当点E与点N重合时,即AE<时,BE有最小值,与函数图象不符,故D错误; 故选:B. 【点评】本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键. 二、填空题(共4小题,每小题4分,满分16分) 9.(4分)如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为 3π cm2.(结果保留π) 【分析】知道扇形半径,圆心角,运用扇形面积公式就能求出. 【解答】解:由S=知 S=×π×32=3πcm2. 【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=. 10.(4分)在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为 24 m. 【分析】根据同时同地的物高与影长成正比列式计算即可得解. 【解答】解:设这栋建筑物的高度为xm, 由题意得,=, 解得x=24, 即这栋建筑物的高度为24m. 故答案为:24. 【点评】本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键. 11.(4分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为 x1=﹣2,x2=1 . 【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解. 【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1), ∴方程组的解为,, 即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1. 故答案为x1=﹣2,x2=1. 【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题. 12.(4分)对于正整数n,定义F(n)=,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1. (1)求:F2(4)= 37 ,F2015(4)= 26 ; (2)若F3m(4)=89,则正整数m的最小值是 6 . 【分析】通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可. 【解答】解:(1)F2(4)=F(F1(4))=F(16)=12+62=37; F1(4)=F(4)=16,F2(4)=37,F3(4)=58, F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16, 通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26; (2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6. 故答案为:(1)37,26;(2)6. 【点评】本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键. 三、解答题(共13小题,满分72分) 13.(5分)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1. 【分析】原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可. 【解答】解:原式=﹣1+﹣1+2=. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 14.(5分)如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE. 【分析】根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论. 【解答】证明:∵AB=AC,D是BC中点, ∴AD⊥BC, ∴∠ADC=90°, ∵BE⊥AC, ∴∠BEC=90°, ∴∠ADC=∠BEC, 而∠ACD=∠BCE, ∴△ACD∽△BCE. 【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质. 15.(5分)已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值. 【分析】把x=m代入方程得到m2﹣2=3m,原式分子利用平方差公式化简,将m2﹣2=3m代入计算即可求出值. 【解答】解:把x=m代入方程得:m2﹣3m﹣2=0,即m2﹣2=3m, 则原式===3. 【点评】此题考查了一元二次方程的解,熟练掌握运算法则是解本题的关键. 16.(5分)抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式. 【分析】由于抛物线平移前后二次项系数不变,则可设平移后的抛物线的表达式为y=2x2+bx+c,然后把点A和点B的坐标代入得到关于b、c的方程组,解方程组求出b、c即可得到平移后的抛物线的表达式. 【解答】解:设平移后的抛物线的表达式为y=2x2+bx+c, 把点A(0,3),B(2,3)分别代入得,解得, 所以平移后的抛物线的表达式为y=2x2﹣4x+3. 【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 17.(5分)如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC. (1)求反比例函数的解析式; (2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标. 【分析】(1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式; (2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标. 【解答】解: (1)把x=2代入y=2x中,得y=2×2=4, ∴点A坐标为(2,4), ∵点A在反比例函数y=的图象上, ∴k=2×4=8, ∴反比例函数的解析式为y=; (2)∵AC⊥OC, ∴OC=2, ∵A、B关于原点对称, ∴B点坐标为(﹣2,﹣4), ∴B到OC的距离为4, ∴S△ABC=2S△ACO=2××2×4=8, ∴S△OPC=8, 设P点坐标为(x,),则P到OC的距离为||, ∴×||×2=8,解得x=1或﹣1, ∴P点坐标为(1,8)或(﹣1,﹣8). 【点评】本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键. 18.(5分)如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E. (1)求线段CD的长; (2)求cos∠ABE的值. 【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5; (2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解. 【解答】解:(1)在△ABC中,∵∠ACB=90°, ∴sinA==, 而BC=8, ∴AB=10, ∵D是AB中点, ∴CD=AB=5; (2)在Rt△ABC中,∵AB=10,BC=8, ∴AC==6, ∵D是AB中点, ∴BD=5,S△BDC=S△ADC, ∴S△BDC=S△ABC,即CD•BE=•AC•BC, ∴BE==, 在Rt△BDE中,cos∠DBE===, 即cos∠ABE的值为. 【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式. 19.(5分)已知关于x的一元二次方程mx2﹣(m+2)x+2=0有两个不相等的实数根x1,x2. (1)求m的取值范围; (2)若x2<0,且>﹣1,求整数m的值. 【分析】(1)由二次项系数不为0,且根的判别式大于0,求出m的范围即可; (2)利用求根公式表示出方程的解,根据题意确定出m的范围,找出整数m的值即可. 【解答】解:(1)由已知得:m≠0且△=(m+2)2﹣8m=(m﹣2)2>0, 则m的范围为m≠0且m≠2; (2)方程解得:x=,即x=1或x=, ∵x2<0,∴x2=<0,即m<0, ∵>﹣1, ∴>﹣1,即m>﹣2, ∵m≠0且m≠2, ∴﹣2<m<0, ∵m为整数, ∴m=﹣1. 【点评】此题考查了根的判别式,一元二次方程有两个不相等的实数根即为根的判别式大于0. 20.(5分)某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10); 质量档次 1 2 … x … 10 日产量(件) 95 90 … 100﹣5x … 50 单件利润(万元) 6 8 … 2x+4 … 24 为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元. (1)求y关于x的函数关系式; (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值. 【分析】(1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式; (2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论. 【解答】解:(1)由题意,得 y=(100﹣5x)(2x+4), y=﹣10x2+180x+400(1≤x≤10的整数); 答:y关于x的函数关系式为y=﹣10x2+180x+400; (2)∵y=﹣10x2+180x+400, ∴y=﹣10(x﹣9)2+1210. ∵1≤x≤10的整数, ∴x=9时,y最大=1210. 答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元. 【点评】本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键. 21.(5分)如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF. (1)求证:直线PC是⊙O的切线; (2)若AB=,AD=2,求线段PC的长. 【分析】(1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线; (2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3﹣r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC的长. 【解答】(1)证明:连接OC. ∵AD与⊙O相切于点A, ∴FA⊥AD. ∵四边形ABCD是平行四边形, ∴AD∥BC, ∴FA⊥BC. ∵FA经过圆心O, ∴F是的中点,BE=CE,∠OEC=90°, ∴∠COF=2∠BAF. ∵∠PCB=2∠BAF, ∴∠PCB=∠COF. ∵∠OCE+∠COF=180°﹣∠OEC=90°, ∴∠OCE+∠PCB=90°. ∴OC⊥PC. ∵点C在⊙O上, ∴直线PC是⊙O的切线. (2)解:∵四边形ABCD是平行四边形, ∴BC=AD=2. ∴BE=CE=1. 在Rt△ABE中,∠AEB=90°,AB=, ∴. 设⊙O的半径为r,则OC=OA=r,OE=3﹣r. 在Rt△OCE中,∠OEC=90°, ∴OC2=OE2+CE2. ∴r2=(3﹣r)2+1. 解得, ∵∠COE=∠PCE,∠OEC=∠CEP=90°. ∴△OCE∽△CPE, ∴. ∴. ∴. 【点评】此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用. 22.(5分)阅读下面材料: 小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB; (2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决. 请你帮小明计算:OC=  ;tan∠AOD= 5 ; 解决问题: 如图3,计算:tan∠AOD=  . 【分析】(1)用三角板过C作AB的垂线,从而找到D的位置; (2)连接AC、DB、AD、DE.由△ACO∽△DBO求得CO的长,由等腰直角三角形的性质可以求出AF,DF的长,从而求出OF的长,在Rt△AFO中,根据锐角三角函数的定义即可求出tan∠AOD的值; (3)如图,连接AE、BF,则AF=,AB=,由△AOE∽△BOF,可以求出AO=,在Rt△AOF中,可以求出OF=,故可求得tan∠AOD. 【解答】解:(1)如图所示: 线段CD即为所求. (2)如图2所示连接AC、DB、AD. ∵AD=DE=2, ∴AE=2. ∵CD⊥AE, ∴DF=AF=. ∵AC∥BD, ∴△ACO∽△DBO. ∴CO:DO=2:3. ∴CO=. ∴DO=. ∴OF=. tan∠AOD=. (3)如图3所示: 根据图形可知:BF=2,AE=5. 由勾股定理可知:AF==,AB==. ∵FB∥AE, ∴△AOE∽△BOF. ∴AO:OB=AE:FB=5:2. ∴AO=. 在Rt△AOF中,OF==. ∴tan∠AOD=. 【点评】本题主要考查的是相似三角形的性质和判定、勾股定理的应用、锐角三角函数的定义,根据点阵图构造相似三角形是解题的关键. 23.(7分)在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n). (1)求代数式mn的值; (2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值; (3)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围. 【分析】(1)只需将点A、B的坐标代入反比例函数的解析式就可解决问题; (2)将点B的坐标代入y=(x﹣1)2得到n=m2﹣2m+1,先将代数式变形为mn(m2﹣2m+1)+2mm﹣4n,然后只需将m2﹣2m+1用n代替,即可解决问题; (3)可先求出直线y=x与反比例函数y=交点C和D的坐标,然后分a>0和a<0两种情况讨论,先求出二次函数的图象经过点D或C时对应的a的值,再结合图象,利用二次函数的性质(|a|越大,抛物线的开口越小)就可解决问题. 【解答】解:(1)∵反比例函数y=的图象经过点A(1,4)、B(m,n), ∴k=mn=1×4=4, 即代数式mn的值为4; (2)∵二次函数y=(x﹣1)2的图象经过点B, ∴n=(m﹣1)2=m2﹣2m+1, ∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n =mn(m2﹣2m+1)+2mm﹣4n =4n+2×4﹣4n =8, 即代数式m3n﹣2m2n+3mn﹣4n的值为8; (3)设直线y=x与反比例函数y=交点分别为C、D, 解,得: 或, ∴点C(﹣2,﹣2),点D(2,2). ①若a>0,如图1, 当抛物线y=a(x﹣1)2经过点D时, 有a(2﹣1)2=2, 解得:a=2. ∵|a|越大,抛物线y=a(x﹣1)2的开口越小, ∴结合图象可得:满足条件的a的范围是0<a<2; ②若a<0,如图2, 当抛物线y=a(x﹣1)2经过点C时, 有a(﹣2﹣1)2=﹣2, 解得:a=﹣. ∵|a|越大,抛物线y=a(x﹣1)2的开口越小, ∴结合图象可得:满足条件的a的范围是a<﹣. 综上所述:满足条件的a的范围是0<a<2或a<﹣. 【点评】本题主要考查了反比例函数图象上点的坐标特征、求代数式的值、求直线与反比例函数图象的交点坐标、二次函数的性质等知识,另外还重点对整体思想、数形结合的思想、分类讨论的思想进行了考查,运用整体思想是解决第(2)小题的关键,考虑临界位置并运用数形结合及分类讨论的思想是解决第(3)小题的关键. 24.(7分)如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α. (1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系; (2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF. ①若α=90°,依题意补全图3,求线段AF的长; ②请直接写出线段AF的长(用含α的式子表示). 【分析】(1)根据等腰直角三角形的性质得出即可; (2)①设DE与BC相交于点H,连接 AE,交BC于点G,根据SAS推出△ADE≌△BDC,根据全等三角形的性质得出AE=BC,∠AED=∠BCD.求出∠AFE=45°,解直角三角形求出即可; ②过E作EM⊥AF于M,根据等腰三角形的性质得出∠AEM=∠FEM=,AM=FM,解直角三角形求出FM即可. 【解答】解:(1)AD+DE=4, 理由是:如图1, ∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE, ∴AD+DE=BC=4; (2)①补全图形,如图2, 设DE与BC相交于点H,连接AE, 交BC于点G, ∵∠ADB=∠CDE=90°, ∴∠ADE=∠BDC, 在△ADE与△BDC中, , ∴△ADE≌△BDC, ∴AE=BC,∠AED=∠BCD. ∵DE与BC相交于点H, ∴∠GHE=∠DHC, ∴∠EGH=∠EDC=90°, ∵线段CB沿着射线CE的方向平移,得到线段EF, ∴EF=CB=4,EF∥CB, ∴AE=EF, ∵CB∥EF, ∴∠AEF=∠EGH=90°, ∵AE=EF,∠AEF=90°, ∴∠AFE=45°, ∴AF==4; ②如图2,过E作EM⊥AF于M, ∵由①知:AE=EF=BC, ∴∠AEM=∠FEM=,AM=FM, ∴AF=2FM=EF×sin=8sin. 【点评】本题考查了全等三角形的性质和判定,解直角三角形,等腰三角形的性质,平移的性质的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度偏大. 25.(8分)在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点. 定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积. 例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4 (1)若图形W是等腰直角三角形ABO,OA=OB=1. ①如图3,当点A,B在坐标轴上时,它的测度面积S= 1 ; ②如图4,当AB⊥x轴时,它的测度面积S= 1 ; (2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为 2 ; (3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围. 【分析】(1)由测度面积的定义利用它的测度面积S=|OA|•|OB|求解即可; ②利用等腰直角三角形的性质求出AC,AB,利用测度面积S=|AB|•|OC|求解即可; (2)先确定正方形有最大测度面积S时的图形,即可利用测度面积S=|AC|•|BD|求解. (3)分两种情况当A,B或B,C都在x轴上时,当顶点A,C都不在x轴上时分别求解即可. 【解答】解:(1)①如图3, ∵OA=OB=1,点A,B在坐标轴上, ∴它的测度面积S=|OA|•|OB|=1

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开