温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
正多边形
知识
讲解
基础
馨雅资源网
正多边形和圆—知识讲解(基础)
责编:常春芳
【学习目标】
1.了解正多边形和圆的有关概念及对称性;
2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正
多边形;
3.会进行正多边形的有关计算.
【要点梳理】
知识点一、正多边形的概念
各边相等,各角也相等的多边形是正多边形.
要点诠释:
判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).
知识点二、正多边形的重要元素
1.正多边形的外接圆和圆的内接正多边形
正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
2.正多边形的有关概念
(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.
(2)正多边形外接圆的半径叫做正多边形的半径.
(3)正多边形每一边所对的圆心角叫做正多边形的中心角.
(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.
3.正多边形的有关计算
(1)正n边形每一个内角的度数是;
(2)正n边形每个中心角的度数是;
(3)正n边形每个外角的度数是.
要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.
知识点三、正多边形的性质
1.正多边形都只有一个外接圆,圆有无数个内接正多边形.
2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.
3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.
4.边数相同的正多边形相似。它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.
5.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
要点诠释:(1)各边相等的圆的内接多边形是圆的内接正多边形;(2)各角相等的圆的外切多边形是圆的外切正多边形.
知识点四、正多边形的画法
1.用量角器等分圆
由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形.
2.用尺规等分圆
对于一些特殊的正n边形,可以用圆规和直尺作图.
①正四、八边形。
在⊙O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形。 再逐次平分各边所对的弧(即作∠AOB的平分线交于 E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形。
②正六、三、十二边形的作法。
通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,任画一条直径AB,分别以A、B为圆心,以⊙O的半径为半径画弧与⊙O相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点。
显然,A、E、F(或C、B、D)是⊙O的3等分点。
同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分……。
要点诠释:画正n边形的方法:(1)将一个圆n等份,(2)顺次连结各等分点.
【典型例题】
类型一、正多边形的概念
1.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )
A.45° B.60° C.75° D.90°
【答案】A.
【解析】如图,连接OB、OC,则∠BOC=90°,
根据圆周角定理,得:∠BPC=∠BOC=45°.
故选A.
【点评】本题主要考查了正方形的性质和圆周角定理的应用.
举一反三:
【变式】如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )
A.30° B.45° C.55° D.60°
【答案】连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.
故选B.
【高清ID号:356969 关联的位置名称(播放点名称):经典例题1-2】
2.如图1,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=( )
A.60° B.65° C.72° D.75°
图1 图2
【思路点拨】
连接OD,根据题意求出∠POQ和∠AOD的度数,利用平行关系求出∠AOP度数,即可求出∠AOQ的度数.
【答案】D.
【解析】如图2,连接OD,由题意可知∠POQ=120°,∠AOD=90°,
由BC∥RQ可知P为弧AD的中点,所以∠AOP=45°,
所以∠AOQ=∠POQ-∠AOP=120°-45°=75°.
故选D.
【点评】解决此类问题的关键是作出恰当的辅助线(如正多边形的半径、边心距、中心角等),再利用正多边形与圆有关性质求解.
类型二、正多边形和圆的有关计算
3.(2015•鞍山一模)如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;
(2)求∠APH的度数.
【答案与解析】
(1)证明:∵在正六边形ABCDEF中,
AB=BC,∠ABC=∠C=120°,
在△ABG与△BCH中,
∴△ABG≌△BCH;
(2)解:由(1)知:△ABG≌△BCH,
∴∠BAG=∠HBC,
∴∠BPG=∠ABG=120°,
∴∠APH=∠BPG=120°.
【点评】本题考查了正多边形的性质及相关计算,解题的关键是正确地利用正六边形中相等的元素.
4.(2015•道里区二模)若同一个圆的内接正三角形、正方形、正六边形的边长分别记作a3,a4,a6,则a3:a4:a6等于( )
A.1:: B. 1:2:3 C. 3:2:1 D. ::1
【思路点拨】从中心向边作垂线,构建直角三角来解决.
【答案】D.
【解析】解:设圆的半径是r,
则多边形的半径是r,
如图1,则内接正三角形的边长a3=r,
如图2,内接正方形的边长是a4=r,
如图3,正六边形的边长是a6=r,
因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比a3:a4:a6=::1.
故选D.
【点评】本题考查了正多边形和圆,正多边形的计算一般是通过中心作边的垂线,连接半径,构造直角三角形来求解.
举一反三:
【高清ID号:356969 关联的位置名称(播放点名称):经典例题5-6】
【变式】如图是对称中心为点的正六边形.如果用一个含角的直角三角板的角,借助点(使角的顶点落在点处),把这个正六边形的面积等分,那么的所有可能的值是 ___________ __ .
【答案】
根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,
即可知:360÷30=12;
360÷60=6;
360÷90=4;
360÷120=3;
360÷180=2.
故么n的所有可能的值是2,3,4,6,12.
学魁网