分享
圆周角和圆心角的关系—知识讲解(基础).doc
下载文档

ID:3236307

大小:158KB

页数:6页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
圆周角 圆心角 关系 知识 讲解 基础
馨雅资源网 圆周角和圆心角的关系--知识讲解(基础) 责编:常春芳 【学习目标】 1.理解圆周角的概念,了解圆周角与圆心角之间的关系; 2.理解圆周角定理及推论; 3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力. 【要点梳理】 要点一、圆周角 1.圆周角定义:  像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.                       2.圆周角定理:   圆周角的度数等于它所对弧上的圆心角度数的一半. 3.圆周角定理的推论:   推论1:同弧或等弧所对的圆周角相等; 推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:   (1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.   (2)圆周角定理成立的前提条件是在同圆或等圆中. (3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图) 要点二、圆内接四边形 1.圆内接四边形定义: 四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆. 2.圆内接四边形性质: 圆内接四边形的对角互补.如图,四边形ABCD是⊙O的内接四边形,则∠A+∠C=180°,∠B+∠D=180°. 要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补. 【典型例题】 类型一、圆周角、圆心角、弧、弦之间的关系及应用 1.如图,在⊙O中,,求∠A的度数.                      【答案与解析】 . 【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三: 【变式】如图所示,正方形ABCD内接于⊙O,点E在劣弧AD上,则∠BEC等于( ) A.45° B.60° C.30° D.55° 【答案】A. ∵ AB=BC=CD=DA, ∴ , ∴ ∠BEC=45°. 类型二、圆周角定理及应用 2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角? 【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】 (a)∠1顶点在⊙O内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角; (c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角. 3.(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数; (2)求证:∠1=∠2. 【答案与解析】  (1)解:∵BC=DC, ∴∠CBD=∠CDB=39°, ∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC, ∴∠CEB=∠CBE, 而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD, ∴∠2+∠BAE=∠1+∠CBD, ∵∠BAE=∠CBD, ∴∠1=∠2. 【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键. 4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系? 为什么?        【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD, 证明AD是高或是∠BAC的平分线即可. 【答案与解析】 BD=CD. 理由是:如图,连接AD    ∵AB是⊙O的直径    ∴∠ADB=90°即AD⊥BC    又∵AC=AB,∴BD=CD. 【总结升华】解题的关键是正确作出辅助线. 举一反三: 【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为(  )   A.2 B. 4 C. 4 D. 8 【答案】C. 提示:∵∠A=22.5°, ∴∠BOC=2∠A=45°, ∵⊙O的直径AB垂直于弦CD, ∴CE=DE,△OCE为等腰直角三角形, ∴CE=OC=2, ∴CD=2CE=4. 故选:C. 类型三、圆内接四边形及应用 5.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,求∠D的度数. 【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数. 【答案与解析】 解:∵圆内接四边形的对角互补, ∴ ∠A:∠B:∠C:∠D=2:3:4:3 设∠A=2x,则∠B=3x,∠C=4x,∠D=3x, ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°. 【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用. 举一反三: 【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是( ). A.110° B.70° C.55° D.125° 【答案】D. 学魁网

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开