温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题07
二元一次方程组-2年中考1年模拟备战2018年中考数学精品系列解析版
专题
07
二元
一次方程
年中
模拟
备战
2018
数学
精品
系列
解析
备战2018中考系列:数学2年中考1年模拟
第二篇 方程与不等式
专题07 二元一次方程(组)
☞解读考点
知 识 点
名师点晴
二元一次方程 的有关概念[来源:学科网ZXXK]
1. 二元一次方程的概念
会识别二元一次方程.[来源:Zxxk.Com][来源:学科网][来源:学科网ZXXK]
2. 二元一次方程的解
会识别一组数是不是二元一次方程的解.
3.二元一次方程组
理解二元一次方程组的概念并会判断.
二元一次方程的解法
带入消元
加减消元
会选择适当的方法解二元一次方程组.
二元一次方程的应用
由实际问题抽象出一元一次方程
要列方程,首先要根据题意找出存在的等量关系.
最后要检验结果是不是合理.
☞2年中考
【2017年题组】
一、选择题
1.(2017衢州)二元一次方程组的解是( )
A. B. C. D.
【答案】B.
【解析】
试题分析:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选B.
考点:解二元一次方程组.
2.(2017浙江省嘉兴市)若二元一次方程组的解为,则a﹣b=( )
A.1 B.3 C. D.
【答案】D.
【解析】
考点:1.二元一次方程组的解;2.整体思想.
3.(2017浙江省台州市)滴滴快车是一种便捷的出行工具,计价规则如下表:
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
【答案】D.
【解析】
试题分析:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7),10.8+0.3x=16.5+0.3y,0.3(x﹣y)=5.7,x﹣y=19.
故这两辆滴滴快车的行车时间相差19分钟.
故选D.学科~网
考点:二元一次方程的应用.
4.(2017黑龙江省龙东地区)“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )
A.4种 B.5种 C.6种 D.7种
【答案】A.
【解析】
点睛:本题考查了二元一次方程的应用.对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.
考点:1.二元一次方程的应用;2.方案型.
5.(2017山东省济南市)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )
A. B.
C. D.
【答案】C.
【解析】
试题分析:设合伙人数为x人,物价为y钱,根据题意,可列方程组:,故选C.
考点:由实际问题抽象出二元一次方程组.
二、填空题
6.(2017内蒙古包头市)若关于x、y的二元一次方程组的解是,则的值为 .
【答案】1.
【解析】
试题分析:∵关于x、y的二元一次方程组的解是,∴,解得a=﹣1,b=2,∴=(﹣1)2=1.故答案为:1.
考点:二元一次方程组的解.
7.(2017北京市)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .
【答案】.
【解析】
考点:由实际问题抽象出二元一次方程组.
8.(2017四川省乐山市)二元一次方程组的解是 .
【答案】.
【解析】
试题分析:原方程可化为:,化简为:,解得:.故答案为:;
考点:解二元一次方程组.学科!网
9.(2017四川省宜宾市)若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是 .
【答案】m>﹣2.
【解析】
考点:1.解一元一次不等式;2.二元一次方程组的解;3.整体思想.
10.(2017四川省自贡市)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:
“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组 .
【答案】.
【解析】
试题分析:设大、小和尚各有x,y人,则可以列方程组:
.故答案为:.
考点:二元一次方程组的应用.
三、解答题
12.(2017江苏省徐州市)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
【答案】今年妹妹6岁,哥哥10岁.
【解析】
答:今年妹妹6岁,哥哥10岁.
考点:二元一次方程组的应用.
13.(2017内蒙古呼和浩特市)某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?
【答案】打了八折.
【解析】
试题分析:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:,解得:,500×16+450×4=9800(元), =0.8.
答:打了八折.
考点:二元一次方程组的应用.学科#网
14.(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:
(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?
(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);
(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?
【答案】(1)购进篮球40个,排球20个;(2)y=5x+1200;(3)共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.最大利润为1415元.
【解析】
(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,∴y与x之间的函数关系式为:y=5x+1200.
(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:,解得:40≤x≤.
∵x取整数,∴x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.
∵在y=5x+1200中,k=5>0,∴y随x的增大而增大,∴当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.
点睛:本题考查了二元一次方程组的应用、一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出y与x之间的函数关系式;(3)根据一次函数的性质解决最值问题.
考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用;4.方案型;5.最值问题.
15.(2017四川省南充市)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?
【答案】(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)2960.
【解析】
答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;
(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).
答:最节省的租车费用是2960元.
考点:1.一元一次不等式的应用;2.二元一次方程组的应用;3.最值问题.
16.(2017宁夏)某商店分两次购进 A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
(1)求A、B两种商品每件的进价分别是多少元?
(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
【答案】(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.学科…网
【解析】
试题分析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.
答:A种商品每件的进价为20元,B种商品每件的进价为80元.
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.
∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤200.
∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.
点睛:本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.
考点:1.一次函数的应用;2.二元一次方程组的应用;3.最值问题.
17.(2017山东省东营市)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
【答案】(1)改扩建一所A类学校所需资金为1200万元,一所B类学校所需资金为1800万元;(2)共有3种方案,具体见解析.
【解析】
答:改扩建一所A类学校所需资金为1200万元,一所B类学校所需资金为1800万元.
(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得:,∴3≤a≤5,∵x取整数,∴x=3,4,5.
即共有3种方案:
方案一:改扩建A类学校3所,B类学校7所;
方案二:改扩建A类学校4所,B类学校6所;
方案三:改扩建A类学校5所,B类学校5所.
点睛:本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型.
18.(2017河南省)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
【答案】(1)A种魔方的单价为20元/个,B种魔方的单价为15元/个;(2)当0≤m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.
【解析】
答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;
w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.
当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;
当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;
当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.
综上所述:当0≤m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.
点睛:本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.
考点:1.二元一次方程组的应用;2.方案型.
19.(2017湖北省恩施州)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?
【答案】(1)男式单车2000元/辆,女式单车1500元/辆;(2)该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.
【解析】
(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;
设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500.
答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.最值问题;4.方案型.
20.(2017湖北省武汉市)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?
【答案】(1)甲种奖品购买了5件,乙种奖品购买了15件;(2)该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.
【解析】
(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得:
,解得:≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12.
答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.应用题;4.方案型.
21.(2017贵州省遵义市)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:
问题1:单价
该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?
问题2:投放方式
该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
【答案】问题1:A型自行车的单价是70元, B型自行车的单价是80元;问题2:a=15.
【解析】
试题分析:问题1
设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得
50x+50(x+10)=7500,解得x=70,∴x+10=80.
答:A型自行车的单价是70元, B型自行车的单价是80元;
问题2
由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.
点睛:本题主要考查了一元一次方程以及分式方程的应用,解题时注意:列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.
考点:1.分式方程的应用;2.二元一次方程组的应用.
22.(2017重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.
【答案】(1)F(243)=9,F(617)=14;(2).
【解析】
∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.
∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.
∵s是“相异数”,∴x≠2,x≠3.
∵t是“相异数”,∴y≠1,y≠5,∴或或,∴或或,∴k==或k==1或k==,∴k的最大值为.
点睛:本题考查了因式分解的应用以及二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.
考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.
23.(2017山东省莱芜市)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.
(1)改网店甲、乙两种口罩每袋的售价各多少元?
(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?
【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.
【解析】
试题解析:(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:,解这个方程组得:,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;
(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得,解这个不等式组得:222.2<m≤227.3,因m为整数,故有5种进货方案,分别是:
购进甲种口罩223袋,乙种口罩277袋;
购进甲种口罩224袋,乙种口罩276袋;
购进甲种口罩225袋,乙种口罩275袋;
购进甲种口罩226袋,乙种口罩274袋;
购进甲种口罩227袋,乙种口罩273袋;
设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.
点睛:本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.
考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用;4.方案型;5.最值问题.
【2016年题组】
一、选择题
1.(2016宁夏)已知x,y满足方程组,则x+y的值为( )
A.9 B.7 C.5 D.3
【答案】C.
【解析】
考点:1.二元一次方程组的解;2.整体思想.
2.(2016广东省茂名市)我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B. C. D.
【答案】C.
【解析】
试题分析:设有x匹大马,y匹小马,根据题意得:,故选C.
考点:由实际问题抽象出二元一次方程组.
3.(2016贵州省黔东南州)小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:
若小丽需要购买3个商品A和2个商品B,则她要花费( )
A.64元 B.65元 C.66元 D.67元
【答案】C.
【解析】
考点:二元一次方程组的应用.
4.(2016甘肃省天水市)有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为( )
A.x=1,y=3 B.x=4,y=1 C.x=3,y=2 D.x=2,y=3
【答案】C.
【解析】
试题分析:根据题意得:7x+9y≤40,则,∵40﹣9y≥0且y是正整数,∴y的值可以是:1或2或3或4.
当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3cm;
当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1cm;
当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6cm;
当y=4时,x≤,则x=0(舍去).
则最小的是:x=3,y=2.故选C.
考点:二元一次方程的应用.
5.(2016贵州省毕节市)已知关于x,y的方程是二元一次方程,则m,n的值为( )
A.m=1,n=﹣1 B.m=﹣1,n=1 C.m=,n= D.m=,n=
【答案】A.
【解析】
考点:二元一次方程的定义.
6.(2016黑龙江省龙东地区)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )
A.1 B.2 C.3 D.4
【答案】C.
【解析】
试题分析:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:,,,则共有3种不同截法,故选C.
考点:1.二元一次方程的应用;2.方案型;3.操作型.
7.(2016四川省宜宾市)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为( )
A.4 B.5 C.6 D.7
【答案】B.
【解析】
试题分析:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:
方案1:A产品8件,B产品12件;
方案2:A产品9件,B产品11件;
方案3:A产品10件,B产品10件;
方案4:A产品11件,B产品9件;
方案5:A产品12件,B产品8件;
故选B.
考点:1.二元一次方程组的应用;2.方案型.
二、填空题
8.(2016四川省成都市)已知是方程组的解,则代数式的值为___________.
【答案】-8.
【解析】
考点:二元一次方程组的解.
9.(2016广西钦州市)若x,y为实数,且满足,则的值是 .
【答案】.
【解析】
试题分析:∵,且≥0,≥0,∴,解之得:,∴===.
考点:1.解二元一次方程组;2.非负数的性质:偶次方;3.非负数的性质:算术平方根;4.综合题.
10.(2016江苏省扬州市)以方程组的解为坐标的点(x,y)在第 象限.
【答案】二.
【解析】
考点:1.二元一次方程组的解;2.点的坐标.
11.(2016浙江省杭州市)已知关于x的方程的解满足(0<n<3),若y>1,则m的取值范围是 .
【答案】.
【解析】
试题分析:解方程组,得:.∵y>1,∴2n﹣1>1,即n>1.
又∵0<n<3,∴1<n<3.∵n=x﹣2,∴1<x﹣2<3,即3<x<5,∴,∴.又∵,∴.故答案为:.
考点:1.分式方程的解;2.二元一次方程组的解;3.解一元一次不等式.
12.(2016湖北省荆州市)若与是同类项,点P(m,n)在双曲线上,则a的值为 .
【答案】3.
【解析】
试题分析:∵与是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.故答案为:3.
考点:1.反比例函数图象上点的坐标特征;2.同类项;3.解二元一次方程组.
13.(2016江苏省盐城市)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需 分钟.
【答案】40.
【解析】
考点:二元一次方程组的应用.
三、解答题
14.(2016四川省甘孜州)(1)计算:;
(2)解方程组:.
【答案】(1)1;(2).
【解析】
试题分析:(1)由零次幂的意义以及特殊角的三角函数值,将其代入算式中即可得出结论;
(2)根据用加减法解二元一次方程组的步骤解方程组即可得出结论.
试题解析:(1)原式==1;
(2)方程①×2+②得:3x=9,方程两边同时除以3得:x=3,将x=3代入①中得:3﹣y=2,移项得:y=1,∴方程组的解为.
考点:1.解二元一次方程组;2.实数的运算;3.零指数幂;4.特殊角的三角函数值.学.科.网
15.(2016四川省达州市)已知x,y满足方程组,求代数式的值.
【答案】.
【解析】
考点:1.代数式求值;2.解二元一次方程组.
16.(2016山东省济南市)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:
(1)请问采摘的黄瓜和茄子各多少千克?
(2)这些采摘的黄瓜和茄子可赚多少元?
【答案】(1)采摘的黄瓜30千克,茄子10千克;(2)23元.
【解析】
试题分析:(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;
(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.
试题解析:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得:,解得:.
答:采摘的黄瓜30千克,茄子10千克;
(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).
答:这些采摘的黄瓜和茄子可赚23元.
考点:二元一次方程组的应用.
17.(2016江苏省徐州市)小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:
(1)小丽买了自动铅笔、记号笔各几支?
(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?
【答案】(1)小丽购买自动铅笔1支,记号笔2支;(2)共3种方案:①1本软皮笔记本与7支记号笔;②2本软皮笔记本与4支记号笔;③3本软皮笔记本与1支记号笔.
【解析】
试题解析:(1)设小丽购买自动铅笔x支,记号笔y支,根据题意可得:,解得:.
答:小丽购买自动铅笔1支,记号笔2支;
(2)设小丽购买软皮笔记本m本,自动铅笔n支,根据题意可得:
m+1.5n=15,∵m,n为正整数,∴或或.
答:共3种方案:①1本软皮笔记本与7支记号笔;②2本软皮笔记本与4支记号笔;③3本软皮笔记本与1支记号笔.
考点:1.二元一次方程组的应用;2.二元一次方程的应用;3.方案型.
18.(2016广东省深圳市)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.
【答案】(1)桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)购买桂味4千克,糯米糍8千克时,所需总费用最低.
【解析】
试题解析:(1)设桂味的售价为每千克x元,糯米糍的售价为每千克y元;
根据题意得:,解得:;
答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;
(2)设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;
答:购买桂味4千克,糯米糍8千克时,所需总费用最低.
考点:1.一次函数的应用;2.二元一次方程组的应用;3.方案型;4.最值问题.
19.(2016四川省泸州市)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?
【答案】(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.
【解析】
(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.
试题解析:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得:.
答:A种商品的单价为16元、B种商品的单价为4元.
(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:
方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;
方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
20.(2016四川省资阳市)某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.
【答案】(1)A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.
【解析】
试题解析:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.
答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;
(2)设购进a台A型污水处理器,根据题意可得:
220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.
考点:1.一元一次不等式的应用;2.二元一次方程组的应用.
21.(2016山东省枣庄市)Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn=(其中a,b是常数,n≥4)
(1)通过画图,可得:四边形时,P4= ;五边形时,P5= ;
(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.
【答案】(1)1;5;(2)a=5,b=6.
【解析】
试题分析:(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;
(2)将(1)中