温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题37
解直角三角形的应用-2018年中考数学考点总动员系列原卷版
专题
37
直角三角形
应用
2018
年中
数学
考点
总动员
系列
原卷版
2018年中考数学备考之黄金考点聚焦
考点三十七:解直角三角形的应用
聚焦考点☆温习理解
一、解直角三角形的应用常用知识[来源:学科网ZXXK]
1. 仰角和俯角:
仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角
俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角
2.坡度和坡角
坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=________
坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα
坡度越大,α角越大,坡面________
3.方向角(或方位角)
指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角
二、解直角三角形的应用可解决的问题
1.测量物体的高度;
2.测量河的宽度;学+科网
3.解决航海航空问题;
4.解决坡度问题;[来源:学#科#网Z#X#X#K]
5.解决实际生活中其它问题.
名师点睛☆典例分类[来源:学科网]
考点典例一、解直角三角形的应用----测量物体的高度
【例1】(2017湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
【答案】4.2m.
考点:解直角三角形的应用.
【点睛】本题主要考查了解直角三角形的应用中有关仰角和俯角的问题,解决本题的关键是找准直角三角形中线段及角的关系.
【举一反三】
(2017新疆建设兵团第19题)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)
考点典例二、解直角三角形的应用----测量河的宽度及距离
【例2】(2017四川宜宾第21题)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).
【答案】河的宽度为50(+1)m.
【解析】学+科网
试题分析:直接过点A作AD⊥BC于点D,利用tan30°=,进而得出答案.
试题解析:过点A作AD⊥BC于点D,
∵∠β=45°,∠ADC=90°,
∴AD=DC,
设AD=DC=xm,
则tan30°=,
解得:x=50(+1),
答:河的宽度为50(+1)m.
考点:解直角三角形的应用.
【点睛】此题考查了解直角三角形的应用中测量河的宽度问题,关键是过点A作AD⊥BC于点D,
从而把问题转化到两个直角三角形中,然后利用解直角三角形的知识解决问题.
【举一反三】
(2017内蒙古呼和浩特第22题)如图,地面上小山的两侧有,两地,为了测量,两地的距离,让一热气球从小山西侧地出发沿与成角的方向,以每分钟的速度直线飞行,分钟后到达处,此时热气球上的人测得与成角,请你用测得的数据求,两地的距离长.(结果用含非特殊角的三角函数和根式表示即可)
考点典例三、解直角三角形的应用----解决航海航空问题
【例3】(2017新疆乌鲁木齐第21题)一艘渔船位于港口的北偏东方向,距离港口海里处,它沿北偏西方向航行至处突然出现故障,在处等待救援,之间的距离为海里,救援船从港口出发分钟到达处,求救援的艇的航行速度.,结果取整数)
【答案】救援的艇的航行速度大约是64海里/小时.
【解析】
试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,
再根据路程÷时间=速度求解即可.
∵cos37°=,
∴EB=BC•cos37°≈0.8×10=8海里,
EF=AD=17.32海里,
∴FC=EF﹣CE=11.32海里,
AF=ED=EB+BD=18海里,
在Rt△AFC中,
AC=≈21.26海里,
21.26×3≈64海里/小时.
答:救援的艇的航行速度大约是64海里/小时.
考点:解直角三角形的应用﹣方向角问题
【点睛】本题考查了解直角三角形的应用﹣方向角问题,涉及到方向角问题主要是和航海航空有关的问题.将三角形转化为直角三角形时,注意尽量不要破坏所给条件是关键.
【举一反三】
(2017湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的
俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.
①求点H到桥左端点P的距离; 学&科网
②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.
考点典例四、解直角三角形的应用----解决坡度问题
【例4】(2017海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
【答案】水坝原来的高度为12米..
【解析】
试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
试题解析:设BC=x米,
在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
在Rt△EBD中,
∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
即2+x=4+,解得x=12,即BC=12,
答:水坝原来的高度为12米..
考点:解直角三角形的应用,坡度.
【点睛】本题考查了解直角三角形的应用中有关坡度的问题,解答本题的关键是理解坡度的定义,及勾股定理的表达式,要注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用.
【举一反三】
(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A.5.1米 B.6.3米 C.7.1米 D.9.2米
考点典例五、解直角三角形的应用----解决实际生活问题
【例5】(2017郴州第22题)如图所示,城市在城市正东方向,现计划在两城市间修建一条高速铁路(即线段),经测量,森林保护区的中心在城市的北偏东方向上,在线段上距城市的处测得在北偏东方向上,已知森林保护区是以点为圆心,为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?学科*网
(参考数据: )
【答案】这条高速公路不会穿越保护区,理由详见解析.
【解析】
∵∠PBH=∠PAB+∠APB,
∴∠BAP=∠BPA=30°,
∴BA=BP=120,
在Rt△PBH中,sin∠PBH= ,
∴PH=PBsin60°=120× ≈103.80,
∵103.80>100,
∴这条高速公路不会穿越保护区.
考点:解直角三角形的应用.
【举一反三】
(2017上海第21题)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.
(1)求sinB的值;
(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.
课时作业☆能力提升
1.(2017广西百色第10题)如图,在距离铁轨200米处的处,观察由南宁开往百色的“和谐号”动车,当动车车头在处时,恰好位于处的北偏东方向上,10秒钟后,动车车头到达处,恰好位于处西北方向上,则这时段动车的平均速度是( )米/秒.
A. B. C. 200 D.300
2. (2017黑龙江绥化第9题)某楼梯的侧面如图所示,已测得的长约为3.5米, 约为,则该楼梯的高度可表示为( )
[来源:学科网]
A.米 B.米 C.米 D.米
3. (2017山东烟台第12题)如图,数学实践活动小组要测量学校附近楼房的高度,在水平底面处安置侧倾器得楼房顶部点的仰角为,向前走20米到达处,测得点的仰角为.已知侧倾器的高度为1.6米,则楼房的高度约为( )[来源:Z.xx.k.Com]
(结果精确到0.1米,)
A.米 B.米 C.米 D.米
4. (2017甘肃兰州第3题)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于( )
A. B. C. D.
5. (2017浙江宁波第16题)如图,一名滑雪运动员沿着倾斜角为的斜坡,从滑行至,已知米,则这名滑雪运动员的高度下降了 米.(参考数据:,,)学科网
6. (2017辽宁大连第15题)如图,一艘海轮位于灯塔的北偏东方向,距离灯塔的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处.此时,处与灯塔的距离约为 .(结果取整数,参考数据:)
7. (2017贵州黔东南州第22题)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)
(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
8. (2017青海西宁第24题)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段上的两点分别对南岸的体育中心进行测量,分别没得米,求体育中心到湟水河北岸的距离约为多少米(精确到1米,)?
9. (2017山东德州第21题)如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之间的距离;(保留根号)
(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:,)
10. (2017甘肃庆阳第22题)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
11. (2017四川泸州第22题)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.
12. (2017浙江嘉兴第22题)如图是小强洗漱时的侧面示意图,洗漱台(矩形)靠墙摆放,高,宽,小强身高,下半身,洗漱时下半身与地面成(),身体前倾成(),脚与洗漱台距离(点,,,在同一直线上).学——科网
(1)此时小强头部点与地面相距多少?
(2)小强希望他的头部恰好在洗漱盆的中点的正上方,他应向前或后退多少?
(,,,结果精确到)
13
原创精品资源学科网独家享有版权,侵权必究!