分享
2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第10讲平面直角坐标系.docx
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第10讲 平面直角坐标系 2018 数学 中考 第一轮 复习 讲义 10 平面 直角 坐标系
第十讲平面直角坐标系 知识回顾 一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了 。 其中,水平的数轴叫做 或 ,取向右为正方向;铅直的数轴叫做 或 ,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的 ;建立了直角坐标系的平面,叫做 。 为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做 、 、 、 。 注意:x轴和y轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。 二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第 象限 点P(x,y)第 象限在 点P(x,y)在第 象限 点P(x,y)在第 象限 2、坐标轴上的点的特征 点P(x,y)在 轴上,x为任意实数 点P(x,y)在 轴上,y为任意实数 点P(x,y)既在 轴上,又在 轴上x,y同时为零,即点P坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第 象限夹角平分线上x与y相等 点P(x,y)在第 象限夹角平分线上x与y互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的 坐标相同。 位于平行于y轴的直线上的各点的 坐标相同。 5、关于x轴、y轴或远点对称的点的坐标的特征 点P与点p′关于x轴对称 坐标相等, 坐标互为相反数 点P与点p′关于y轴对称 坐标相等, 坐标互为相反数 点P与点p′关于原点对称 坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x轴的距离等于 (2)点P(x,y)到y轴的距离等于 (3)点P(x,y)到原点的距离等于 基础检测 1.(2017广西)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2. (2017浙江湖州)在平面直角坐标系中,点 P(1,2)关于原点的对称点 P'的坐标是(  ) A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2) 3.(2017四川南充)如图,等边△OAB的边长为2,则点B的坐标为(  ) A.(1,1) B.(,1) C.(,) D.(1,) 4.(2017青海西宁)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为(  ) A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2) 5. (2017广西河池)点A(2,1)与点B关于原点对称,则点B的坐标是 . 6. (2017贵州)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为 . 7. 在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为 . 9. 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  ) A.2 B.3 C.4 D.5 考点解析 知识点一、平面直角坐标系内点的坐标特征 【例题】(在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【分析】根据各象限内点的坐标特征解答即可. 【解答】解:∵点A(a,﹣b)在第一象限内, ∴a>0,﹣b>0, ∴b<0, ∴点B(a,b)所在的象限是第四象限. 故选D. 【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣) 【变式】(2016·湖北荆门·3分)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考点】点的坐标. 【分析】根据各象限内点的坐标特征解答即可. 【解答】解:∵点A(a,﹣b)在第一象限内, ∴a>0,﹣b>0, ∴b<0, ∴点B(a,b)所在的象限是第四象限. 故选D. 知识点二、平面直角坐标系中的对称点的坐标 【例题】如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 (2,﹣1) . 【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可. 【解答】解:因为A(﹣2,1)和B(﹣2,﹣3), 所以可得点C的坐标为(2,﹣1), 故答案为:(2,﹣1). 【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答. 【变式】(2015•湖南湘西州,第10题,4分)在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(  )   A.(﹣2,1) B. (2,﹣1) C. (2,1) D. (﹣2,﹣1) 考点: 关于原点对称的点的坐标.. 分析: 关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标. 解答: 解:∵点A坐标为(﹣2,1), ∴点B的坐标为(2,﹣1). 故选B. 点评: 本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y). 知识点三、用坐标表示位置 【例题】(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?(  ) A.5 B.3 C.﹣3 D.﹣5 【分析】先求出A、B、C三点的横坐标的和为﹣1+0+5=4,纵坐标的和为﹣4﹣1+4=﹣1,再把它们相减即可求得a﹣b之值. 【解答】解:由图形可知: a=﹣1+0+5=4, b=﹣4﹣1+4=﹣1, a﹣b=4+1=5. 故选:A. 【点评】考查了点的坐标,解题的关键是求得a和b的值. 【变式】如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 (2,﹣1) . 【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可. 【解答】解:因为A(﹣2,1)和B(﹣2,﹣3), 所以可得点C的坐标为(2,﹣1), 故答案为:(2,﹣1). 【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答. 知识点四、坐标与图形变化 【例题】如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  ) A.2 B.3 C.4 D.5 【分析】直接利用平移中点的变化规律求解即可. 【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位, 由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位, 由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位, 所以点A、B均按此规律平移, 由此可得a=0+1=1,b=0+1=1, 故a+b=2. 故选:A. 【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 【变式】(2016•青岛)如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P'在A1B1上的对应点P的坐标为(  ) A.(a﹣2,b+3) B.(a﹣2,b﹣3) C.(a+2,b+3) D.(a+2,b﹣3) 【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案. 【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位, 则P(a﹣2,b+3) 故选A. 【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减. 知识点五、函数的表示方法 【例题】(2016•台湾)坐标平面上有一个二元一次方程式的图形,此图形通过(﹣3,0)、(0,﹣5)两点.判断此图形与下列哪一个方程式的图形的交点在第三象限?(  ) A.x﹣4=0 B.x+4=0 C.y﹣4=0 D.y+4=0 【分析】分别作出各选项中的直线,以及通过(﹣3,0)、(0,﹣5)两点的直线,根据图象即可确定出此图形与下列方程式的图形的交点在第三象限的直线方程. 【解答】解:作出选项中x﹣4=0,x+4=0,y﹣4=0,y+4=0的图象,以及通过(﹣3,0)、(0,﹣5)两点直线方程, 根据图象得:通过(﹣3,0)、(0,﹣5)两点直线与y+4=0的交点在第三象限, 故选D 【点评】此题考查了坐标与图形性质,作出相应的图象是解本题的关键. 【变式】(2015•四川凉山州,第9题4分)在平面直角坐标系中,点P(﹣3,2)关于直线对称点的坐标是( ) A.(﹣3,﹣2) B.(3,2) C.(2,﹣3) D.(3,﹣2) 【答案】C. 【解析】点P关于直线对称点为点Q,作AP∥x轴交于A,∵是第一、三象限的角平分线,∴点A的坐标为(2,2),∵AP=AQ,∴点Q的坐标为(2,﹣3).故选C. 知识点六、平面直角坐标的综合运用 【例题】(2016•滨州)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是(  ) A.(2,﹣3) B.(2,3) C.(3,2) D.(3,﹣2) 【分析】由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了. 【解答】解:∵点A坐标为(0,a), ∴点A在该平面直角坐标系的y轴上, ∵点C、D的坐标为(b,m),(c,m), ∴点C、D关于y轴对称, ∵正五边形ABCDE是轴对称图形, ∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴, ∴点B、E也关于y轴对称, ∵点B的坐标为(﹣3,2), ∴点E的坐标为(3,2). 故选:C. 【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y轴. 【变式】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1. (1)在图中画出△A1B1C1; (2)点A1,B1,C1的坐标分别为 (0,4) 、 (﹣1,1) 、 (3,1) ; (3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标. 【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可; (2)根据平面直角坐标写出坐标即可; (3)设P(0,y),再根据三角形的面积公式得×4×|h|=6,进而可得y的值. 【解答】解:(1)如图所示: (2)由图可得:A1(0,4)、B1(﹣1,1);C1 (3,1), 故答案为:(0,4)、(﹣1,1)、(3,1); (3)设P(0,y),再根据三角形的面积公式得: S△PBC=×4×|h|=6,解得|h|=3, 求出y的值为(0,1)或(0,﹣5). 【点评】此题主要考查了作图﹣﹣平移变换,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可. 【典例解析】 【例题1】(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  ) A.2 B.3 C.4 D.5 【分析】直接利用平移中点的变化规律求解即可. 【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位, 由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位, 由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位, 所以点A、B均按此规律平移, 由此可得a=0+1=1,b=0+1=1, 故a+b=2. 故选:A. 【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 【例题2】(2015•青岛,第10题3分)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是 (6,1) . 【解析】坐标与图形性质,先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案. 【解答】解:点A变化前的坐标为(6,3), 将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(6,1), 故答案为(6,1) 【点评】此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键 中考热点 考题1:(2016·贵州安顺·3分)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是(  ) A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3) 【分析】直接利用平移中点的变化规律求解即可. 【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4). 故选A. 【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 考题2:(2015•甘肃庆阳,第6题,3分)已知点P(a+1,﹣ +1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是(  )   A. B. C. D. 【解析】 在数轴上表示不等式的解集;解一元一次不等式组;关于原点对称的点的坐标.首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(﹣,+),可得到不等式a+1<0,﹣ +1>0,然后解出a的范围即可. 【解答】解:∵P(a+1,﹣ +1)关于原点对称的点在第四象限, ∴P点在第二象限, ∴a+1<0,﹣ +1>0, 解得:m<﹣1, 则a的取值范围在数轴上表示正确的是. 故选:C. 【点评】 此题主要考查了关于原点对称的点的坐标特点,以及各象限内点的坐标符号,关键是判断出P点所在象限. 考点3:(2015•济南,第14题3分)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是(  )   A. (0,0) B. (0,2) C. (2,﹣4) D. (﹣4,2) 【解析】规律型:点的坐标.设P1(x,y),再根据中点的坐标特点求出x、y的值,找出规律即可得出结论. 【解答】 解:设P1(x,y), ∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2, ∴=1, =﹣1,解得x=2,y=﹣4, ∴P1(2,﹣4). 同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…, ∴每6个数循环一次. ∵ =335…5, ∴点P2015的坐标是(0,0). 故选A. 【点评】本题考查的是点的坐标,根据题意找出规律是解答此题的关键. 考点4:(2015•宁夏第11题3分)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为 (,﹣) . 【解析】正多边形和圆;坐标与图形性质.先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE中,则GE=,OG=.即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出. 【解答】 解:连接OE,由正六边形是轴对称图形知: 在Rt△OEG中,∠GOE=30°,OE=1. ∴GE=,OG=. ∴A(﹣1,0),B(﹣,﹣),C(,﹣)D(1,0),E(,),F(﹣,). 故答案为:(,﹣) 【点评】 本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识. 达标测试 一、选择题 1. 已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.(2016•大连)在平面直角坐标系中,点(1,5)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3. 在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为(  ) A.(3,2) B.(2,) C.(,3) D.(,) 4.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是(  ) A.(4,2)或(﹣4,2) B.(4,﹣2)或(﹣4,﹣2) C.(4,﹣2)或(﹣5,﹣2) D.(4,﹣2)或(﹣1,﹣2) 5. 如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( ) A.点A B.点B C.点C D.点D 6. 五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(  ) A.(3,3) B.(3,2) C.(5,2) D.(4,3) 7.(2015•甘肃庆阳,第12题,3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(  ) A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,) 8.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为(  ) A. (4,3) B.(2,4) C.(3,1) D.(2,5) 【解析】坐标与图形变化-平移.根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可. 【解答】解:由坐标系可得A(﹣2,6),将△ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(﹣2+4,6﹣1), 即(2,5),故选:D. 【点评】 此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律. 二、填空题: 9.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 . 10.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m= . 11.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为 . 12.(2015•青海西宁第14题2分)若点(a,1)与(﹣2,b)关于原点对称, 三.解答题 13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系, (1)点A的坐标为 (2,7) ,点C的坐标为 (6,5) . (2)将△ABC先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△A1B1C1. (3)连接A1B,A1C,求△A1BC的面积. 14. 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,4),(﹣1,2). (1)请在如图所示的网格平面内作出平面直角坐标系; (2)将△ABC向右平移2个单位长度,然后再向下平移3个单位长度,得到△A′B′C′,画出平移后的△A′B′C′. (3)写出点△A′B′C′各个顶点的坐标. 15. 已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动) (1)写出B点的坐标( 4,6 ); (2)当点P移动了4秒时,在图中平面直角坐标系中描出此时P点的位置,并求出点P的坐标; (3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间t. 答案与解析 【知识归纳】 【知识归纳答案】 一、平面直角坐标系 1、平面直角坐标系:平面直角坐标系;横轴或者x轴;纵轴或者y轴;原点;平面直角坐标系;第一象限,第二象限,第三象限,第四象限。 2、点的坐标的概念 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,当时,(a,b)和(b,a)是两个不同点的坐标。 二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征:一;二;三;四。 2、坐标轴上的点的特征:x轴;y轴;x轴,y轴; 3、两条坐标轴夹角平分线上点的坐标的特征:第一象限;第三象限。 4、和坐标轴平行的直线上点的坐标的特征:纵坐标;横坐标。 5、关于x轴、y轴或远点对称的点的坐标的特征:横坐标,纵坐标;纵坐标,横坐标。横坐标和纵坐标。 6、点到坐标轴及原点的距离:(1)|y|(2)|x|(3) 【基础检测答案】 1.(2017广西)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考点】D1:点的坐标. 【分析】分点P的横坐标是正数和负数两种情况讨论求解. 【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6, 4﹣2m<﹣2, 所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限; ②m﹣3<0,即m<3时,﹣2m>﹣6, 4﹣2m>﹣2, 点P(m﹣3,4﹣2m)可以在第二或三象限, 综上所述,点P不可能在第一象限. 故选A. 2. (2017浙江湖州)在平面直角坐标系中,点 P(1,2)关于原点的对称点 P'的坐标是(  ) A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2) 【考点】R6:关于原点对称的点的坐标. 【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案. 【解答】解:点 P(1,2)关于原点的对称点 P'的坐标是(﹣1,﹣2), 故选:D. 3.(2017四川南充)如图,等边△OAB的边长为2,则点B的坐标为(  ) A.(1,1) B.(,1) C.(,) D.(1,) 【考点】KK:等边三角形的性质;D5:坐标与图形性质;KQ:勾股定理. 【分析】先过B作BC⊥AO于C,则根据等边三角形的性质,即可得到OC以及BC的长,进而得出点B的坐标. 【解答】解:如图所示,过B作BC⊥AO于C,则 ∵△AOB是等边三角形, ∴OC=AO=1, ∴Rt△BOC中,BC==, ∴B(1,), 故选:D. 4.(2017青海西宁)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为(  ) A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2) 【考点】P5:关于x轴、y轴对称的点的坐标;Q3:坐标与图形变化﹣平移. 【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案. 【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2), 则点B关于x轴的对称点B′的坐标是(2,2), 故选:B. 5. (2017广西河池)点A(2,1)与点B关于原点对称,则点B的坐标是 (﹣2,﹣1) . 【考点】R6:关于原点对称的点的坐标. 【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案. 【解答】解:∵点A(2,1)与点B关于原点对称, ∴点B的坐标是(﹣2,﹣1), 故答案为:(﹣2,﹣1). 6. (2017贵州)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为 (1,﹣1) . 【考点】Q3:坐标与图形变化﹣平移. 【分析】根据坐标平移规律即可求出答案. 【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标, ∴平移后A的坐标为(1,﹣1) 故答案为:(1,﹣1) 7. 在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【分析】根据各象限内点的坐标特征解答即可. 【解答】解:∵点A(a,﹣b)在第一象限内, ∴a>0,﹣b>0, ∴b<0, ∴点B(a,b)所在的象限是第四象限. 故选D. 【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣) 8.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为  . 【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移. 【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可. 【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2, ∴点C到x轴的距离为1+2×=+1, 横坐标为2, ∴A(2, +1), 第2016次变换后的三角形在x轴上方, 点A的纵坐标为+1, 横坐标为2-2016×1=-2014, 所以,点A的对应点A′的坐标是(-2014,+1) 故答案为:(-2014,+1). 9. 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  ) A.2 B.3 C.4 D.5 【分析】直接利用平移中点的变化规律求解即可. 【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位, 由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位, 由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位, 所以点A、B均按此规律平移, 由此可得a=0+1=1,b=0+1=1, 故a+b=2. 故选:A. 【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 【达标检测答案】 一、选择题 1. 已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【分析】根据点在平面直角坐标系中各象限的坐标特点解答即可. 【解答】解:∵点A(m,n)在第四象限, ∴m>0,n<0, ∴点B(n,m)在第二象限. 故选B. 【点评】本题考查了各象限内点的坐标的符号特征,第四象限和第二象限的点的横纵坐标符号恰好相反. 2.(2016•大连)在平面直角坐标系中,点(1,5)所在的象限是(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【分析】根据各象限内点的坐标特征解答即可. 【解答】解:点(1,5)所在的象限是第一象限. 故选A. 【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 3. 在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为(  ) A.(3,2) B.(2,) C.(,3) D.(,) 【答案】B. 【解析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点A(2,3)关于x轴对称的点的坐标是(2,-3). 故选B. 4.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是(  ) A.(4,2)或(﹣4,2) B.(4,﹣2)或(﹣4,﹣2) C.(4,﹣2)或(﹣5,﹣2) D.(4,﹣2)或(﹣1,﹣2) 【分析】由点M和M′在同一条平行于x轴的直线上,可得点M′的纵坐标;由“M′到y轴的距离等于4”可得,M′的横坐标为4或﹣4,即可确定M′的坐标. 【解答】解:∵M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上, ∴M′的纵坐标y=﹣2, ∵“M′到y轴的距离等于4”, ∴M′的横坐标为4或﹣4. 所以点M′的坐标为(4,﹣2)或(﹣4,﹣2),故选B. 【点评】本题考查了点的坐标的确定,注意:由于没具体说出M′所在的象限,所以其坐标有两解,注意不要漏解. 5. 如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( ) A.点A B.点B C.点C D.点D 【答案】B 【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置. 解:根据如图所建的坐标系,易知(10,20)表示的位置是点B, 故选:B. 6. 五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(  ) A.(3,3) B.(3,2) C.(5,2) D.(4,3) 【考点】D3:坐标确定位置. 【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标. 【解答】解:由题意可得,如图所示的平面直角坐标系, 故点C的坐标为(3,3), 故选A. 7.(2015•甘肃庆阳,第12题,3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(  )   A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D. (2n+1,) 【解析】 首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出An的坐标的规律,求出A2n+1的坐标是多少即可. 【解答】解:∵△OA1B1是边长为2的等边三角形, ∴A1的坐标为(1,),B1的坐标为(2,0), ∵△B2A2B1与△OA1B1关于点B1成中心对称, ∴点A2与点A1关于点B1成中心对称, ∵2×2﹣1=3,2×0﹣=﹣, ∴点A2的坐标是(3,﹣), ∵△B2A3B3与△B2A2B1关于点B2成中心对称, ∴点A3与点A2关于点B2成中心对称, ∵2×4﹣3=5,2×0﹣(﹣)=, ∴点A3的坐标是(5,), ∵△B3A4B4与△B3A3B2关于点B3成中心对称, ∴点A4与点A3关于点B3成中心对称, ∵2×6﹣5=7,2×0﹣=﹣, ∴点A4的坐标是(7,﹣), …, ∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…, ∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1, ∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣, ∴顶点A2n+1的纵坐标是, ∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,). 故选:C. 【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出An的横坐标、纵坐标各是多少. 二、填空题: 8.(2015年四川省广元市中考,12,3分)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 (﹣3,5) . 【解析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标. 【解答

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开