温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2018
年中
数学
复习方法
技巧
专题
中点
联想
解析
方法技巧专题六 中点联想训练
本文基于教学实践和反思提出了在初中数学教学中对“中点”的一些认识。并对中点问题进行了详细分类,对每种类型进行了举例、分析,特别是对各类中点问题的基本思路做了探讨和研究,并且针对学生在解题上存在的问题,提出了中点问题教学的几点建议:(1)在中点问题教学中,要积极培养学生的观察能力,提高学生的图形结合能力。(2)在中点问题教学中,要培养学生的分析能力与概括能力,并帮助学生实现各部分知识之间的联系与转换,从而提高学生的综合分析问题和概括问题的能力。(3)在中点问题教学中,要给学生有专题性的训练,从而提高学生解中点问题的能力。
1.与中点有关的定理
(1)直角三角形斜边上的中线等于斜边的一半.(2)等腰三角形“三线合一”的性质.(3)三角形的中位线定理.(4)垂径定理及其推论.
2.与中点有关的辅助线
(1)构造三角形的中位线,如连结三角形两边的中点;取一边的中点,然后与另一边的中点相连结;过三角形一边的中点作另一边的平行线等等.(2)延长角平分线的垂线,构造等腰三角形的“三线合一”.(3)把三角形的中线延长一倍,构造平行四边形.
一、中点在普通三角形中的应用
【例题】(2017广西河池)三角形的下列线段中能将三角形的面积分成相等两部分的是( )
A.中线 B.角平分线 C.高 D.中位线
【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.
【分析】根据等底等高的三角形的面积相等解答.
【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,
∴三角形的中线将三角形的面积分成相等两部分.
故选A.
【同步训练】(2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.
【考点】KD:全等三角形的判定与性质;KQ:勾股定理.
【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;
(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.
【解答】(1)证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
,
∴△BDG≌△ADC,
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,
∴DE=BG=EG,DF=AC=AF,
∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,
∴∠EDG+∠FDA=90°,
∴DE⊥DF;
(2)解:∵AC=10,
∴DE=DF=5,
由勾股定理得,EF==5.
二、中点在等腰三角形中的应用
【例题】(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .
【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.
【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到,求得CH=,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.
【解答】解:在BD上截取BE=CH,连接CO,OE,
∵∠ACB=90°CH⊥BD,
∵AC=BC=3,CD=1,
∴BD=,
∴△CDH∽△BDC,
∴,
∴CH=,
∵△ACB是等腰直角三角形,点O是AB中点,
∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,
∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,
∵∠DCH=∠CBD,∴∠OCH=∠ABD,
在△CHO与△BEO中,,
∴△CHO≌△BEO,
∴OE=OH,∠BOE=∠HOC,
∵OC⊥BO,
∴∠EOH=90°,
即△HOE是等腰直角三角形,
∵EH=BD﹣DH﹣CH=﹣﹣=,
∴OH=EH×=,
故答案为:.
【同步训练】
(2016·湖北随州·10分)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
【特例探究】
(1)如图1,当tan∠PAB=1,c=4时,a= 4 ,b= 4 ;
如图2,当∠PAB=30°,c=2时,a= ,b= ;
【归纳证明】
(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
【拓展证明】
(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.
【考点】四边形综合题.
【分析】(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解决问题.
②连接EF,在RT△PAB,RT△PEF中,利用30°性质求出PA、PB、PE、PF,再利用勾股定理即可解决问题.
(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.
(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.
【解答】(1)解:如图1中,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=2,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PEF=∠PFE=45°,
∴PF=PE=2,PB=PA=4,
∴AE=BF==2.
∴b=AC=2AE=4,a=BC=4.
故答案为4,4.
如图2中,连接EF,
,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=1,
∵∠PAB=30°,
∴PB=1,PA=,
在RT△EFP中,∵∠EFP=∠PAB=30°,
∴PE=,PF=,
∴AE==,BF==,
∴a=BC=2BF=,b=AC=2AE=,
故答案分别为,.
(2)结论a2+b2=5c2.
证明:如图3中,连接EF.
∵AF、BE是中线,
∴EF∥AB,EF=AB,
∴△FPE∽△APB,
∴==,
设FP=x,EP=y,则AP=2x,BP=2y,
∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,
b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
(3)解:如图4中,在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,
同理可证△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四边形CEPF是平行四边形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF=AD=,
∴9+AF2=5×()2,
∴AF=4.
三、中点在直角三角形中的应用
【例题】(2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为( )
A.6 B.4 C.7 D.12
【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.
【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.
【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,
∴CD=AB=4.5.
∵CF=CD,
∴DF=CD=×4.5=3.
∵BE∥DC,
∴DF是△ABE的中位线,
∴BE=2DF=6.
故选A.
【同步训练】
(2017•黄石)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=( )
A.60° B.75° C.90° D.105°
【考点】KS:勾股定理的逆定理;KP:直角三角形斜边上的中线.
【分析】根据直角三角形的性质得到BC=2CE=,根据勾股定理的逆定理得到∠ACB=90°,根据三角函数的定义得到∠A=60°,求得∠ACD=∠B=30°,得到∠DCE=60°,于是得到结论.
【解答】解:∵CD⊥AB,E为BC边的中点,
∴BC=2CE=,
∵AB=2,AC=1,
∴AC2+BC2=12+()2=4=22=AB2,
∴∠ACB=90°,
∵tan∠A==,
∴∠A=60°,
∴∠ACD=∠B=30°,
∴∠DCE=60°,
∵DE=CE,
∴∠CDE=60°,
∴∠CDE+∠ACD=90°,
故选C.
【点评】本题考查了勾股定理的逆定理,直角三角形的性质,三角函数的定义,熟练掌握勾股定理的逆定理是解题的关键.
四、中位线在三角形的应用
【例题】(2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为( )
A.6 B.4 C.7 D.12
【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.
【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.
【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,
∴CD=AB=4.5.
∵CF=CD,
∴DF=CD=×4.5=3.
∵BE∥DC,
∴DF是△ABE的中位线,
∴BE=2DF=6.
故选A.
【同步训练】
(2017湖北宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=( )
A.50m B.48m C.45m D.35m
【考点】KX:三角形中位线定理.
【分析】根据中位线定理可得:AB=2DE=48m.
【解答】解:∵D是AC的中点,E是BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
∵DE=24m,
∴AB=2DE=48m,
故选B.
五、中点在圆的性质中的应用
【例题】(2017广西百色)已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.
(1)判断△ABC的形状,并证明你的结论;
(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.
【考点】MI:三角形的内切圆与内心.
【分析】(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解题;
(2)连接OB、OC、OD、OF,易证AD=AF,BD=CF可得DF∥BC,再根据AE长度即可解题.
【解答】解:(1)△ABC为等腰三角形,
∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,
∴∠CFE=∠CEF=∠BDO=∠BEO=90°,
∵四边形内角和为360°,
∴∠EOF+∠C=180°,∠DOE+∠B=180°,
∵=,
∴∠EOF=∠DOE,
∴∠B=∠C,AB=AC,
∴△ABC为等腰三角形;
(2)连接OB、OC、OD、OF,如图,
∵等腰三角形ABC中,AE⊥BC,
∴E是BC中点,BE=CE,
∵在Rt△AOF和Rt△AOD中,,
∴Rt△AOF≌Rt△AOD,
∴AF=AD,
同理Rt△COF≌Rt△COE,CF=CE=2,
Rt△BOD≌Rt△BOE,BD=BE,
∴AD=AF,BD=CF,
∴DF∥BC,
∴=,
∵AE==4,
∴AM=4×=.
【同步训练】
(2017呼和浩特)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧的中点,AC与BD交于点E.
(1)求证:DC2=CE•AC;
(2)若AE=2,EC=1,求证:△AOD是正三角形;
(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH的面积.
【考点】MR:圆的综合题.
【分析】(1)由圆周角定理得出∠DAC=∠CDB,证明△ACD∽△DCE,得出对应边成比例,即可得出结论;
(2)求出DC=,连接OC、OD,如图所示:证出BC=DC=,由圆周角定理得出∠ACB=90°,由勾股定理得出AB==2,得出OB=OC=OD=DC=BC=,证出△OCD、△OBC是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出结论;
(3)由切线的性质得出OC⊥CH,求出∠H=30°,证出∠H=∠BAC,得出AC=CH=3,求出AH和高,由三角形面积公式即可得出答案.
【解答】(1)证明:∵C是劣弧的中点,
∴∠DAC=∠CDB,
∵∠ACD=∠DCE,
∴△ACD∽△DCE,
∴=,
∴DC2=CE•AC;
(2)证明:∵AE=2,EC=1,
∴AC=3,
∴DC2=CE•AC=1×3=3,
∴DC=,
连接OC、OD,如图所示:
∵C是劣弧的中点,
∴OC平分∠DOB,BC=DC=,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴AB==2,
∴OB=OC=OD=DC=BC=,
∴△OCD、△OBC是正三角形,
∴∠COD=∠BOC=∠OBC=60°,
∴∠AOD=180°﹣2×60°=60°,
∵OA=OD,
∴△AOD是正三角形;
(3)解:∵CH是⊙O的切线,∴OC⊥CH,
∵∠COH=60°,
∴∠H=30°,
∵∠BAC=90°﹣60°=30°,
∴∠H=∠BAC,
∴AC=CH=3,
∵AH=3,AH上的高为BC•sin60°=,
∴△ACH的面积=×3×=.
六、中点在四边形中的性质应用
【例题】(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为( )
A.12S B.10S C.9S D.8S
【考点】KR:勾股定理的证明.
【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.
【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2
由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,
∵AM=2EF,
∴2a=2b,
∴a=b,
∵正方形EFGH的面积为S,
∴b2=S,
∴正方形ABCD的面积=4a2+b2=9b2=9S,
故选C.
【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
【同步训练】
(2016·山东省德州市·4分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
【考点】平行四边形的判定与性质.
【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【解答】(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD
即∠APC=∠BPD,
在△APC和△BPD中,
,
∴△APC≌△BPD,
∴AC=BD
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线,属于中考常考题型.
七、中点在其它图形中的综合应用
【达标训练】
1. (2016·陕西·3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
A.2对 B.3对 C.4对 D.5对
【考点】正方形的性质;全等三角形的判定.
【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.
【解答】解:∵四边形ABCD是正方形,
∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,
在△ABD和△BCD中,
,
∴△ABD≌△BCD,
∵AD∥BC,
∴∠MDO=∠M′BO,
在△MOD和△M′OB中,
,
∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,
∴全等三角形一共有4对.
故选C.
2. (2016·山东省东营市·3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法
【答案】B.
【解析】∵矩形ABCD中,∴AD∥BC.∴△AEF∽△CAB….......................①正确;
∵△AEF∽△CAB,∴==,∴CF=2AF……………………………②正确;
过点D作DH⊥AC于点H.易证△ABF≌△CDH(AAS).∴AF=CH.
∵EF∥DH,∴= =1.∴AF=FH.∴FH=CH.
∴DH垂直平分CF.∴DF=DC. ……………………………………………③正确;
设EF=1,则BF=2.∵△ABF∽△EAF.∴=.∴AF===.
∴tan∠ABF==.∵∠CAD=∠ABF,∴tan∠CAD=tan∠ABF=.…………④错误.
故选择B.
【点拨】本题考查了矩形的性质、相似三角形的判定和性质,图形面积的计算,锐角三角函数值的求法,正确的作出辅助线是解本题的关键.
3. (2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 (﹣3,0)或(5,0)或(3,0)或(﹣5,0) .
【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.
【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.
【解答】解:
∵反比例函数y=图象关于原点对称,
∴A、B两点关于O对称,
∴O为AB的中点,且B(﹣1,﹣2),
∴当△PAB为等腰三角形时有PA=AB或PB=AB,
设P点坐标为(x,0),
∵A(1,2),B(﹣1,﹣2),
∴AB==2,PA=,PB=,
当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);
当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);
综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),
故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).
4. (2017广西)如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )
A.45° B.60° C.75° D.85°
【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.
【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.
【解答】解:∵B是的中点,
∴∠AOB=2∠BDC=80°,
又∵M是OD上一点,
∴∠AMB≤∠AOB=80°.
则不符合条件的只有85°.
故选D.
5. (2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .
【考点】KX:三角形中位线定理.
【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得BC.
【解答】解:∵D,E分别是△ABC的边AC和AC的中点,
∴DE是△ABC的中位线,
∵DE=7,
∴BC=2DE=14.
故答案是:14.
6. (2017.江苏宿迁)如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是 2 .
【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.
【分析】首先利用直角三角形斜边上的中线等于斜边的一半求得AB的长,然后根据三角形的中位线定理求解.
【解答】解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,即CD是直角三角形斜边上的中线,
∴AB=2CD=2×2=4,
又∵E、F分别是BC、CA的中点,即EF是△ABC的中位线,
∴EF=AB=×2=2,
故答案为:2.
7. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为 8 .
【分析】根据直角三角形的性质求出DM,根据题意求出DE,根据三角形中位线定理计算即可.
【解答】解:∵AM⊥BM,点D是AB的中点,
∴DM=AC=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=8,
故答案为:8.
【点评】本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
8. (2017哈尔滨)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.
(1)如图1,求证:AD=BD;
(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;
(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.
【考点】MR:圆的综合题.
【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;
(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;
(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.
【解答】(1)证明:如图1,连接OA,
∵C是的中点,
∴,
∴∠AOC=∠BOC,
∵OA=OB,
∴OD⊥AB,AD=BD;
(2)证明:如图2,延长BO交⊙O于点T,连接PT
∵BT是⊙O的直径
∴∠BPT=90°,
∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,
∵BM是⊙O的切线,
∴OB⊥BM,
又∠OBA+∠MBA=90°,
∴∠ABO=∠OMB
又∠ABO=∠APT
∴∠APB﹣90°=∠OMB,
∴∠APB﹣∠OMB=90°;
(3)解:如图3,连接MA,
∵MO垂直平分AB,
∴MA=MB,
∴∠MAB=∠MBA,
作∠PMG=∠AMB,
在射线MG上截取MN=MP,
连接PN,BN,
则∠AMP=∠BMN,
∴△APM≌△BNM,
∴AP=BN,∠MAP=∠MBN,
延长PD至点K,
使DK=DP,
连接AK、BK,
∴四边形APBK是平行四边形;
AP∥BK,
∴∠PAB=∠ABK,∠APB+∠PBK=180°,
由(2)得∠APB﹣(90°﹣∠MBA)
=90°,
∴∠APB+∠MBA=180°
∴∠PBK=∠MBA,
∴∠MBP=∠ABK=∠PAB,
∴∠MAP=∠PBA=∠MBN,
∴∠NBP=∠KBP,
∵PB=PB,
∴△PBN≌△PBK,
∴PN=PK=2PD,
过点M作MH⊥PN于点H,
∴PN=2PH,
∴PH=DP,∠PMH=∠ABO,
∵sin∠PMH=,sin∠ABO=,
∴,
∴,设DP=3a,则PM=5a,
∴MQ=6DP=18a,
∴.
9. (2017黑龙江佳木斯)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为 4或4或4 .
【考点】KQ:勾股定理;KH:等腰三角形的性质.
【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.
【解答】解:如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=4,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=4,
∴Rt△ABM中,AM==4;
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=4,
又∵∠AOC=60°,
∴△AOM是等边三角形,
∴AM=AO=4;
如图3,当∠ABM=90°时,
∵∠BOM=∠AOC=60°,
∴∠BMO=30°,
∴MO=2BO=2×4=8,
∴Rt△BOM中,BM==4,
∴Rt△ABM中,AM==4,
综上所述,当△ABM为直角三角形时,AM的长为4或4或4.
故答案为:4或4或4.
10. (2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( )
A.∠ECD=112.5° B.DE平分∠FDC C.∠DEC=30° D.AB=CD
【考点】KX:三角形中位线定理;KH:等腰三角形的性质.
【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;
根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;
由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;
在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.
【解答】解:∵AB=AC,∠CAB=45°,
∴∠B=∠ACB=67.5°.
∵Rt△ADC中,∠CAD=45°,∠ADC=90°,
∴∠ACD=45°,AD=DC,
∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;
∵E、F分别是BC、AC的中点,
∴FE=AB,FE∥AB,
∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.
∵F是AC的中点,∠ADC=90°,AD=DC,
∴FD=AC,DF⊥AC,∠FDC=45°,
∵AB=AC,
∴FE=FD,
∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,
∴∠FDE=∠FDC,
∴DE平分∠FDC,故B正确,不符合题意;
∵∠FEC=∠B=67.5°,∠FED=22.5°,
∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;
∵Rt△ADC中,∠ADC=90°,AD=DC,
∴AC=CD,
∵AB=AC,
∴AB=CD,故D正确,不符合题意.
故选C.
【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.