分享
3-2-2 流水行船.学生版.doc
下载文档

ID:3234277

大小:609.50KB

页数:12页

格式:DOC

时间:2024-02-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
3-2-2 流水行船.学生版 流水 行船 学生
流水行船 教学目标 1、 掌握流水行船的基本概念 2、 能够准确处理流水行船中相遇和追及的速度关系 知识精讲 一、参考系速度 通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。 二参考系速度——“水速” 但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为: ① 水速度=船速+水速;②逆水速度=船速-水速。(可理解为和差问题) 由上述两个式子我们不难得出一个有用的结论: 船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2 此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。 三、流水行船问题中的相遇与追及 ①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速 也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速. 说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系. 模块一、基本的流水行船问题 【例 1】 一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时? 【巩固】 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间? 【例 2】 一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时? 【巩固】 一只小船在静水中速度为每小时千米.它在长千米的河中逆水而行用了小时.求返回原处需用几个小时? 【例 3】 两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。 【巩固】 光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米需要多少小时? 【巩固】 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。 【巩固】 甲乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米? 【例 4】 一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用 秒. 【例 5】 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天? 【例 6】 一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离? 【巩固】 轮船用同一速度往返于两码头之间,它顺流而下行了个小时,逆流而上行了小时,如果水流速度是每小时千米,两码头之间的距离是多少千米? 【例 7】 一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。 【例 8】 甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米? 【解析】 甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米? 【例 9】 乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时? 【巩固】 一只船在河里航行,顺流而下每小时行千米.已知这只船下行小时恰好与上行小时所行的路程相等.求船速和水速. 【例 10】 船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时? 【例 11】 两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时? 【巩固】 乙两港相距360千米,一艘轮船往返两港需35小时,逆水航行比顺水航行多花了5小时,现在有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港需要多少小时? 【例 12】 一条小河流过A,B, C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米? 【例 13】 河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A点到 B 点,然后穿过湖到C点,共用 3 小时;若他由 C 到 B 再到 A,共需 6 小时.如果湖水也是流动的,速度等于河水速度,从 B 流向 C ,那么,这名游泳者从 A到 B 再到 C 只需 2.5小时;问在这样的条件下,他由C 到 B再到 A,共需多少小时? 【例 14】 小明计划上午 7时 50分到 8时10分之间从码头出发划船顺流而下.已知河水流速为1.4 千米/小时,船在静水中的划行速度为 3千米/小时.规定除第一次划行可不超过 30分钟外,其余每次划行均为 30分钟,任意两次划行之间都要休息15分钟,中途不能改变方向,只能在某次休息后往回划.如果要求小明必须在11时15分准时返回码头,为了使他划行到下游尽可能远处,他应该在______ 时______ 分开始划,划到的最远处距码头_____ 千米. 【例 15】 轮船用同一速度往返于两码头之间,在相同时间内如果它顺流而下能行千米,如果逆流而上能行千米,如果水流速度是每小时千米,求顺水、逆水速度 【例 16】 甲、乙两船分别从港顺水而下至千米外的港,静水中甲船每小时行千米,乙船每小时行千米,水速为每小时千米,乙船出发后小时,甲船才出发,到港后返回与乙迎面相遇,此处距港多少千米? 【例 17】 长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米? 【巩固】 甲乙两港相距400千米,甲港在乙港的上游,有一艘游轮从甲港出发到达乙港后返回共用10小时,水速是游轮静水速度的,那么水速是____千米/小时。 【巩固】 一船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了小时。已知顺水每小时比逆水每小时多行千米,又知前小时比后小时多行千米。那么,甲、乙两港相距 千米。 模块二、相遇与追及问题 【例 18】 A、 B 两码头间河流长为 220 千米,甲、乙两船分别从 A、 B 码头同时起航.如果相向而行 5 小时相遇,如果同向而行 55小时甲船追上乙船.求两船在静水中的速度. 【巩固】 甲、乙两船从相距千米的、两港同时出发相向而行,小时相遇;若两船同时同向而行,则甲用小时赶上乙.问:甲、乙两船的速度各是多少? 【巩固】 、两码头间河流长为千米,甲、乙两船分别从、码头同时起航.如果相向而行小时相遇,如果同向而行小时甲船追上乙船.求两船在静水中的速度. 【例 19】 甲、乙两船的船速分别为每小时17千米和每小时13千米.两船先后从同一港口顺水开出,乙船比甲船早出发 3小时,如果水速是每小时 3千米,问:甲船开出后几小时能追上乙船? 【例 20】 甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时 千米. 【例 21】 甲、乙两艘小游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现甲、乙两艘小游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少千米? 【例 22】 甲轮船和自漂水流测试仪同时从上游的 A 站顺水向下游的 B 站驶去,与此同时乙轮船自 B 站出发逆水向 A 站驶来。7.2 时后乙轮船与自漂水流测试仪相遇。已知甲轮船与自漂水流测试仪 2.5 时后相距 31.25 千米,甲、乙两船航速相等,求 A,B 两站的距离。 【例 23】 学学和思思各开一艘游艇,静水中学学每小时行3.3千米,思思每小时行2.1千米。现在两游艇于同一时刻相向出发,学学从下游上行,思思从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,学学到达思思的出发地。水流速度是每小时 千米。 【例 24】 某人畅游长江,逆流而上,在处丢失一只水壶,他向前又游了分钟后,才发现丢失了水壶,立即返回追寻,在离处千米的地方追到,则他返回寻水壶用了多少分钟? 【巩固】 小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距千米,假定小船的速度是每小时千米,水流速度是每小时千米,那么他们追上水壶需要多少时间? 【巩固】 一个人乘木筏在河面顺流而下,行到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流的速度是每小时 千米. 【例 25】 某河有相距 45 千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4 分钟后与甲船相距 1 千米,预计乙船出发后几小时可与此物相遇。 【例 26】 某河有相距 36千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水漂下, 5 分钟后,与甲船相距 2千米.预计乙船出发后几小时可以与此物相遇? 【例 27】 一条河上有甲、乙两个码头,甲在乙的上游 50 千米处。客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。客船出发时有一物品从船上落入水中,10 分钟后此物距客船 5 千米。客船在行驶 20 千米后折向下游追赶此物,追上时恰好和货船相遇。求水流的速度。 【例 28】 江上有甲、乙两码头,相距 15 千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5 小时后货船追上游船。又行驶了 1 小时,货船上有一物品落入江中(该物品可以浮在水面上),6 分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。则游船在静水中的速度为每小时多少千米? 【例 29】 甲、乙两船分别在一条河的、两地同时相向而行,甲顺流而下,乙逆流而行.相遇时,甲、乙两船行了相等的航程,相遇后继续前进,甲到达地,乙到达地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行千米.如果从第一次相遇到第二次相遇时间相隔小时分,则河水的流速为多少? 【巩固】 甲船在静水中的船速是10千米/时,乙船在静水中的船速是千米/时.两船同时从港出发逆流而上,水流速度是千米/时,乙船到港后立即返回.从出发到两船相遇用了小时,问:,两港相距多少千米? 模块三、用比例解行程题 (一) 对比分析 【例 30】 甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港。已知顺水船速是逆水船速的2倍。有一次,这艘船在由甲港驶向乙港途中遇到突发事件,反向航行一段距离后,再掉头驶向乙港,结果晚到9个小时。轮船的这次航行比正常情况多行驶了 千米。 【例 31】 一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也用 16 时。求水流的速度。 【巩固】 一艘轮船顺流航行80千米,逆流航行48千米共用9小时;顺流航行64千米,逆流航行96千米共用12小时.求轮船的速度. 【巩固】 一艘轮船顺流航行105千米,逆流航行60千米共用12时;顺流航行60千米,逆流航行132千米共用15时。如果两码头相距120千米,那么轮船往返一次需多少时间? 【例 32】 某人乘船由地顺流而下到达地,然后又逆流而上到达同一条河边的地,共用了3小时.已知船在静水中的速度为每小时8千米,水流的速度为每小时2千米.如果、两地间的距离为2千米,那么、两地间的距离是多少千米? 【巩固】 一只帆船的速度是每分钟60米,船在水流速度为每分钟20米的河中,从上游的一个港口到下游某一地,再返回到原地,共用了3小时30分钟.这条船从上游港口到下游某地共走了多少米? 【例 33】 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.那么甲、乙两地之间的距离是多少千米? 【巩固】 一只轮船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了小时.已知顺水每小时比逆水多行千米,又知前4小时比后4小时多行千米.那么,甲、乙两港相距 千米. 【例 34】 甲、乙两地相距30千米,且从甲地到乙地为上坡,乙地到甲地为下坡,小明用2个小时从甲地出发到乙地再返回甲地,且第二个小时比第一个小时多行了12千米,小明上坡和下坡的速度分别为多少? 【例 35】 一艘船从甲港顺水而下到乙港,到达后马上又从乙港逆水返回甲港,共用了12小时.已知顺水每小时比逆水每小时多行16千米,又知前6小时比后6小时多行80千米.那么,甲、乙两港相距 千米. (二)、比例在流水行船中的应用 【例 36】 一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比是.一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距 千米. 【例 37】 A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是 米/秒. 【例 38】 A地位于河流的上游,B 地位于河流的下游.每天早上,甲船从 A地、乙船从 B 地同时出发相向而行.从 12 月 1 号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5 倍,这时两船的相遇地点与平时相比变化了 1 千米.由于天气原因,今天(12 月 6 号)的水速变为平时的 2倍,那么今天两船的相遇地点与 12 月 2 号相比,将变化多少千米. 【例 39】 一艘船从甲港到乙港,逆水每小时行千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用小时,水流速度为每小时千米,甲、乙两港相距 千米。 【例 40】 某船从甲地顺流而下,天到达乙地;该船从乙地返回甲地用了天.问水从甲地流到乙地用了多少时间? 【巩固】 轮船从城到城需行天,而从城到城需行天.从城放一个无动力的木筏,它漂到城需要多少天? 【例 41】 一条大河有A,B两个港口,水由A流向B,水流速度是每小时4千米.甲、乙两船同时由A向B行驶,各自不停地在A,B之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A处同时开始出发的那一次)的地点相距40千米,求A,B两个港口之间的距离. 【例 42】 甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B地、乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【例 43】 一条轮船顺流而下,每时行7.8千米,水流速度为1.8千米/时。现在有甲、乙两条同样的轮船,同时从同一地点反向而行,一段时间后两船先后返回。已知甲、乙两船在时候同时返回到出发点。在这时中,有多少分甲、乙两船前进的方向相同? 【例 44】 男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A,B之间不停地往返奔跑。如果男运动员上坡速度是3米/秒,下坡速度是5米/秒;女运动员上坡速度是2米/秒,下坡速度是3米/秒,那么两人第二次迎面相遇的地点离A点多少米? 12 教师寄语:拼一个春夏秋冬,换一生无怨无悔。

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开